A dendritic nexus in the circuits that coordinate learning
协调学习的电路中的树突状连接
基本信息
- 批准号:10659554
- 负责人:
- 金额:$ 37.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAddressAnatomyApicalAreaBehaviorBehavior ControlBehavioralBiological ModelsBiological Neural NetworksBrainCalciumCalcium SpikesCellsCodeCognition DisordersComplexComputer ModelsCustomDataDendritesElementsEventFeedbackFutureGenerationsGlutamatesImageIndividualInterventionKnowledgeLaboratoriesLearningLearning SkillMachine LearningMapsMeasuresMicroscopeModelingModificationMonitorMotorMotor CortexMusNervous SystemNeuronsOpticsOutcomeOutputPerformancePhasePlayPopulationPositioning AttributeProcessPublishingRecurrenceRoleSensoryShort-Term MemorySignal TransductionSourceSynapsesTechniquesTestingThalamic structureWeightWorkbehavior changebehavioral outcomeexperienceexperimental studyfrontal lobeimprovedin vivoinhibitory neuroninsightmachine learning algorithmmulti-photonnoveloptogeneticsresponsesegregationsensory cortexsensory feedbacksignal processingtheoriestransmission processtwo-photon
项目摘要
Abstract
When we learn a complex behavior the nervous system must continuously drive new actions, compare
predictions for the actions against outcomes, and strengthen or weaken the connections between neurons
(synapses) in order to improve future actions. However, within the multilayer brain networks that control behavior,
the behavioral impact of modifying a synapse depends upon many downstream connections. Thus, learning
requires the brain solve a ‘credit assignment’ problem: information about which synaptic modifications should be
made is distributed across the network, yet must somehow be leveraged by local processes to guide change at
individual synapses. A major gap in our ability to relate behavioral events to synaptic change is the current lack
of knowledge of these local processes that guide synaptic changes at individual neurons. Recent theories of
learning suggest that spikes generated in the apical dendrites of cortical neurons may play a key role in solving
this credit assignment problem. The experiments in this proposal will test the hypothesis that the apical dendrites
of neurons in the pre-motor cortex integrate multiple learning-instructive feedback sources, and – under
appropriate conditions – generate dendritic spikes that rapidly reconfigure the connectivity and function of
neurons. In these experiments we will use advanced optical techniques to monitor and manipulate activity in the
dendrites of a subset of neurons in the frontal cortex that have a well-delineated role in action planning. A key
prediction of our hypothesis is that the activity of the apical dendrites reflects local credit-related calculations and
that this activity is distinct from the activity transmitted to other neurons by action potential generation near the
cell body. We will test this using longitudinal two-photon calcium imaging of cortical neurons during learning to
determine how the behavioral selectivity of dendrites and cell bodies change with changing behavior. In order to
identify the contribution of dendritic spikes to learning, we will also use optogenetics to selectively suppress
activity in the apical dendrites during learning. Computational models also predict that dendritic spikes are
generated by a mismatch between outcome information arriving from long-range feedback projections and local
inhibition that predicts this feedback. To test this, we will combine synaptic glutamate imaging and optogenetics
to map the selectivity and anatomical identity of feedback projections to the apical dendrites, and calcium imaging
to determine the selectivity of local inhibitory neurons that target the apical dendrites. Together, these studies
will provide critical new insights into the circuit mechanisms governing cortical plasticity and credit assignment.
In doing so, they will provide a key framework for connecting complex learning with modifications at the individual
synapse level, and will build bridges between machine learning algorithms and models of biological neural
networks.
抽象的
当我们了解复杂的行为时,神经系统必须继续推动新的动作,请进行比较
预测针对结果的行动,并加强或削弱神经元之间的联系
(突触)为了改善未来的行动。但是,在控制行为的多层大脑网络中,
修改突触的行为影响取决于许多下游连接。那,学习
需要大脑解决“信用分配”问题:有关哪种突触修改的信息
制造是在整个网络上分布的,但必须通过本地流程以某种方式指导更改
个体突触。我们将行为事件与突触变化联系起来的主要差距是当前缺乏
了解指导单个神经元合成变化的这些局部过程。最近的理论
学习表明,皮质神经元的顶端树突中产生的尖峰可能在解决方面起关键作用
此信用分配问题。该提案中的实验将检验以下假设:顶端树突
运动前皮层中的神经元集成了多个学习教学反馈来源,并且 -
适当的条件 - 生成树突尖峰,以快速重新配置
神经元。在这些实验中,我们将使用先进的光学技术来监视和操纵活动
额叶皮层中神经元子集的树突在动作计划中具有很好的作用。钥匙
我们假设的预测是,顶端树突的活动反映了与当地信用相关的计算和
该活动与通过附近的动作电位产生传递给其他神经元的活性不同
细胞体。我们将使用在学习期间对皮质神经元的纵向两光子钙成像进行测试
确定树突和细胞体的行为选择性如何随着行为的变化而变化。为了
确定树突状峰值对学习的贡献,我们还将使用光遗传学有选择地抑制
学习过程中顶端树突的活动。计算模型还预测树突状尖峰是
通过从远程反馈项目到达的结果信息与本地的结果信息之间的不匹配产生
预测这种反馈的抑制作用。为了测试这一点,我们将结合突触谷氨酸成像和光遗传学
将反馈项目的选择性和解剖学身份映射到顶端树突和钙成像
确定针对顶端树突的局部抑制神经元的选择性。在一起,这些研究
将为有关皮质可塑性和信用分配的电路机制提供关键的新见解。
这样一来,他们将提供一个关键框架,以将复杂的学习与个人的修改联系起来
突触水平,将在机器学习算法和生物神经模型之间建造桥梁
网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Michael Kerlin其他文献
Aaron Michael Kerlin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Michael Kerlin', 18)}}的其他基金
Imaging at the speed of spikes: An electro-optical multiphoton microscope
以尖峰速度成像:光电多光子显微镜
- 批准号:
10516843 - 财政年份:2022
- 资助金额:
$ 37.52万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 37.52万 - 项目类别:
Role of Primary Sensory Neuron CaMKII Signaling in Regulation of Pain
初级感觉神经元 CaMKII 信号传导在疼痛调节中的作用
- 批准号:
10656886 - 财政年份:2023
- 资助金额:
$ 37.52万 - 项目类别:
Suprachiasmatic nucleus to kisspeptin circuit in the circadian control of reproduction
视交叉上核至 Kisspeptin 回路在生殖昼夜节律控制中的作用
- 批准号:
10660156 - 财政年份:2023
- 资助金额:
$ 37.52万 - 项目类别:
High content analgesic screening from human nociceptors
从人类伤害感受器中筛选高含量镇痛剂
- 批准号:
10578042 - 财政年份:2023
- 资助金额:
$ 37.52万 - 项目类别: