Regulation of H2S signaling in vascular function
H2S 信号在血管功能中的调节
基本信息
- 批准号:10517850
- 负责人:
- 金额:$ 53.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-10 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:ArteriesBindingBiologyBlood CirculationBlood VesselsBlood flowCalciumCarbon MonoxideCardiovascular DiseasesCardiovascular systemCell membraneCell physiologyCholesterolComplexDataDiseaseEndothelial CellsEndotheliumEventFamilyFunctional disorderGene ExpressionGoalsHemeHomeostasisHydrogen SulfideHypertensionImpairmentIn VitroKnowledgeLeftMediatingMembraneMembrane LipidsMesenteryNitric OxideOrganOxygenasesPathway interactionsPeripheral Vascular DiseasesPharmacologyPhospholipid Transfer ProteinsPotassium ChannelPrincipal InvestigatorProductionPropertyProteinsRegulationReportingResistanceRoleSignal TransductionSignaling MoleculeSiteStrokeSystemTestingTherapeuticTherapeutic InterventionVanilloidVascular Endothelial CellVasodilationVasodilator AgentsWorkblood pressure regulationcholesterol controlcholesterol traffickinggenetic approachin vivoinnovationnew therapeutic targetnovelprogramsreceptorregional differencerepairedresponsesingle-cell RNA sequencingtargeted treatment
项目摘要
Program Director/Principal Investigator (Last, First, Middle): Naik, Jay, S
Impaired endothelial cell (EC) function is one of the first indicators of systemic cardiovascular disease. EC
dysfunction impairs local organ blood flow regulation, a primary cause of end-organ damage in most
cardiovascular diseases. The discovery that ECs also synthesize carbon monoxide (CO) and hydrogen sulfide
(H2S), in addition to nitric oxide (NO), which elicits vasodilation has opened a new chapter in endothelial
gasotransmitter biology. While increasing evidence supports a key role for H2S in cardiovascular homeostasis,
disparate findings in previous studies leaves a significant gap in knowledge on the regulation and significance of
H2S signaling in the vasculature. Recently, we identified a novel regulator of H2S signaling that leads to profound
differences in vasodilatory sensitivity between primary and tertiary segments of the circulation. Intriguingly, our
preliminary data show that H2S dilates small (resistance) arteries in an endothelium-dependent manner at
concentrations that have no effect in large arteries. However, depleting EC membrane cholesterol in large
arteries unmasks H2S-mediated vasodilation, suggesting membrane lipid content and domains regulate H2S
signaling. Moreover, our preliminary data show that native EC cholesterol content is greater in large arteries than
resistance arteries. The concept that innate regional differences in EC membrane cholesterol content mediate
functional differences in EC dilation is wholly novel, and our preliminary data (Fig. 6) demonstrate this may be
caused by increased cholesterol efflux via ATP-binding cassette family a1 (Abca1) and phospholipid transfer
protein (Pltp). Importantly, we have previously shown that changes in EC membrane cholesterol appear to
contribute to dysfunction in disease. Therefore, EC membrane cholesterol is an important but uninvestigated
variable in vascular function. The overall goal of this project is two-fold. First, to elucidate mechanisms leading
to the functionally significant differences we have observed in EC membrane cholesterol content between large
and small arteries. The second is to define ways in vitro and in vivo that these differences in EC membrane
cholesterol control EC function, specifically H2S-induced dilation. Thus, we hypothesize that augmented
cholesterol efflux in EC of resistance arteries enhances downstream H2S signaling
Aim 1: Determine the mechanism(s) leading to heterogeneous membrane cholesterol content between
large and small arteries.
Aim 2: Determine the mechanism(s) by which membrane cholesterol regulates H2S signaling in EC.
Completing the proposed studies will fill an existing knowledge gap by elucidating the regulation of H2S dilation
to identify differences in EC function between small and large arteries. Conceptually, the project is very innovative
in its focus on the novel ability of membrane cholesterol trafficking to act as a regulator of vasodilation. This work
will increase our understanding of the fundamental properties of EC, significantly impacting our understanding
of blood pressure regulation and local blood flow control, and may identify drug targets for the treatment of
multiple vascular-driven diseases.
OMB No. 0925-0001/0002 (Rev. 03/2020 Approved Through 02/28/2023) Page Continuation Format Page
项目总监/主要研究者(最后、第一、中间):Naik,Jay,S
内皮细胞(EC)功能受损是系统性心血管疾病的首要指标之一。EC
功能障碍损害局部器官血流调节,这是大多数人终末器官损伤的主要原因。
心血管疾病发现EC也合成一氧化碳(CO)和硫化氢
(H2S)一氧化氮(NO)的释放,使血管舒张,开启了内皮细胞的新篇章。
气体递质生物学虽然越来越多的证据支持H2S在心血管稳态中的关键作用,
在以前的研究中,不同的研究结果在对调节和重要性的认识上存在重大差距。
血管系统中的H2S信号传导。最近,我们发现了一种新的H2S信号转导调节剂,
循环的初级和三级段之间血管舒张敏感性的差异。有趣的是,我们
初步数据表明,硫化氢以内皮依赖性方式扩张小动脉(阻力),
对大动脉没有影响的浓度。然而,大量消耗EC膜胆固醇,
动脉揭示了H2S介导的血管舒张,表明膜脂质含量和结构域调节H2S
信号此外,我们的初步数据显示,天然EC胆固醇含量在大动脉中高于
阻力动脉EC膜胆固醇含量的先天区域差异介导的概念
EC扩张的功能差异是全新的,我们的初步数据(图6)表明这可能是
通过ATP结合盒家族a1(Abca 1)和磷脂转移增加胆固醇流出引起
蛋白(Pltp)。重要的是,我们以前已经表明,EC膜胆固醇的变化似乎
导致疾病的功能障碍。因此,EC膜胆固醇是一个重要的,但未调查
血管功能的变化。该项目的总体目标有两个方面。首先,阐明导致
我们已经观察到EC膜胆固醇含量在大的
和小动脉。第二个是确定在体外和体内的方式,这些差异在EC膜
胆固醇控制EC功能,特别是H2S诱导的扩张。因此,我们假设,
阻力动脉EC中胆固醇流出增强下游H2S信号传导
目的1:确定导致细胞膜胆固醇含量不均匀的机制,
大小动脉
目的2:确定EC中膜胆固醇调节H2S信号的机制。
完成拟议的研究将通过阐明H2S膨胀的调节来填补现有的知识空白
以确定小动脉和大动脉之间EC功能的差异。从概念上讲,该项目非常具有创新性
其重点是膜胆固醇运输作为血管舒张调节剂的新能力。这项工作
将增加我们对EC基本性质的理解,显著影响我们对EC的理解。
血压调节和局部血流控制,并可能确定药物靶点,用于治疗
多种血管疾病
OMB编号0925-0001/0002(修订版03/2020批准至02/28/2023)页码继续格式页码
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jay S Naik其他文献
Jay S Naik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jay S Naik', 18)}}的其他基金
Regulation of H2S signaling in vascular function
H2S 信号在血管功能中的调节
- 批准号:
10701780 - 财政年份:2022
- 资助金额:
$ 53.76万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Cellular Mechanism of Oxysterol-Binding Protein (OSBP) in Viral Proliferation: A Chemical Biology Approach
氧甾醇结合蛋白 (OSBP) 在病毒增殖中的细胞机制:化学生物学方法
- 批准号:
10588146 - 财政年份:2021
- 资助金额:
$ 53.76万 - 项目类别:
NSF Postdoctoral Fellowship in Biology FY 2021: Analyzing the interplay of chromatin accessibility and transcription factor binding to decipher the cis-regulatory code
2021 财年 NSF 生物学博士后奖学金:分析染色质可及性和转录因子结合的相互作用以破译顺式调控密码
- 批准号:
2109441 - 财政年份:2021
- 资助金额:
$ 53.76万 - 项目类别:
Fellowship Award
Cellular Mechanism of Oxysterol-Binding Protein (OSBP) in Viral Proliferation: A Chemical Biology Approach
氧甾醇结合蛋白 (OSBP) 在病毒增殖中的细胞机制:化学生物学方法
- 批准号:
10212013 - 财政年份:2021
- 资助金额:
$ 53.76万 - 项目类别:
Systems biology analysis of RNA-binding protein aggregation during cellular aging
细胞衰老过程中RNA结合蛋白聚集的系统生物学分析
- 批准号:
10211598 - 财政年份:2021
- 资助金额:
$ 53.76万 - 项目类别:
Systems biology analysis of RNA-binding protein aggregation during cellular aging
细胞衰老过程中RNA结合蛋白聚集的系统生物学分析
- 批准号:
10661772 - 财政年份:2021
- 资助金额:
$ 53.76万 - 项目类别:
Cellular Mechanism of Oxysterol-Binding Protein (OSBP) in Viral Proliferation: A Chemical Biology Approach
氧甾醇结合蛋白 (OSBP) 在病毒增殖中的细胞机制:化学生物学方法
- 批准号:
10772408 - 财政年份:2021
- 资助金额:
$ 53.76万 - 项目类别:
Cellular Mechanism of Oxysterol-Binding Protein (OSBP) in Viral Proliferation: A Chemical Biology Approach
氧甾醇结合蛋白 (OSBP) 在病毒增殖中的细胞机制:化学生物学方法
- 批准号:
10749964 - 财政年份:2021
- 资助金额:
$ 53.76万 - 项目类别:
Cellular Mechanism of Oxysterol-Binding Protein (OSBP) in Viral Proliferation: A Chemical Biology Approach
氧甾醇结合蛋白 (OSBP) 在病毒增殖中的细胞机制:化学生物学方法
- 批准号:
10388237 - 财政年份:2021
- 资助金额:
$ 53.76万 - 项目类别:
Examining the role of SUMOylation in regulating RNA binding protein biology
检查 SUMOylation 在调节 RNA 结合蛋白生物学中的作用
- 批准号:
563739-2021 - 财政年份:2021
- 资助金额:
$ 53.76万 - 项目类别:
University Undergraduate Student Research Awards
Systems biology analysis of RNA-binding protein aggregation during cellular aging
细胞衰老过程中RNA结合蛋白聚集的系统生物学分析
- 批准号:
10483171 - 财政年份:2021
- 资助金额:
$ 53.76万 - 项目类别: