Linking microbiome genetic variants with cardiovascular phenotypes in 50,000 individuals

将 50,000 名个体的微生物组遗传变异与心血管表型联系起来

基本信息

  • 批准号:
    10516693
  • 负责人:
  • 金额:
    $ 70.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY / ABSTRACT The human body is home to a complex community of microorganisms (“microbiome”) that differs in composition between people, with numerous correlates to cardiovascular disease (CVD). Any two people will harbor different strains of a given species, which can be more genetically different than a human and chimpanzee with <60% of their genes shared. Even within a single person, each microbiome species may be a complex mixture of strains with different genomes and functional capabilities. This striking within-species genetic diversity has functional consequences for CVD, because gene loss and gain modify how strains process our diet, metabolize drugs, and stimulate inflammation. Hence, a population genetic approach is essential for revealing causal links between the microbiome and CVD. We have compiled a deeply phenotyped cohort of ~50,000 individuals with metagenomic sequencing of their gut microbiomes. This dataset includes ~8,000 people with atherosclerosis, thousands with measurements of heart function and metabolic health, and hundreds with acute coronary syndrome. This cohort is a unique and ideal setting to perform a well-powered CVD metagenome-wide association study (MWAS). Several barriers must be overcome before MWAS can be deployed at this scale. First, we must reduce the infeasible computational cost of genotyping thousands of microbiome species across ~50,000 people. Second, to ensure that statistical tests for associations do not have high false positive rates we need statistical models that adjust for microbial population structure within and across hosts. The goal of this proposal is to create a research toolbox to address these challenges as well as to identify putative mechanistic links between microbiome and CVD. We will develop data structures and query algorithms for accelerated genotype estimation and mixed effects models for accurate association tests. All code and methods will be open source and designed to be easily extended to other microbiome cohorts. Applying these tools to our cohort, we aim to identify specific microbial genes and pathways responsible for known associations between microbes and CVD. We also expect to discover new associations that were missed because cohorts were too small or they were analyzed with methods that ignore differences in gene content across strains. These findings will be used to identify microbial biomarkers for CVD diagnosis and personalized treatments or to design microbiome targeted drugs, prebiotics, and probiotics to treat heart disease.
项目概要/摘要 人体是一个复杂的微生物群落(“微生物组”)的家园,其组成不同 人与人之间的差异,与心血管疾病 (CVD) 有许多相关性。任何两个人都会怀有不同的 特定物种的品系,其基因差异可能比人类和黑猩猩更大,其遗传差异<60% 他们的基因是共享的。即使在一个人体内,每个微生物组物种也可能是菌株的复杂混合物 具有不同的基因组和功能。这种惊人的种内遗传多样性具有功能性 CVD 的后果,因为基因丢失和获得改变了菌株处理我们的饮食、代谢药物和 刺激炎症。因此,群体遗传学方法对于揭示不同物种之间的因果关系至关重要。 微生物组和 CVD。 我们编制了约 50,000 名个体的深度表型队列,并对他们的肠道进行了宏基因组测序 微生物组。该数据集包括约 8,000 名动脉粥样硬化患者,其中数千人进行了心脏测量 功能和代谢健康,以及数百名急性冠状动脉综合征患者。这个群体是一个独特而理想的群体 设置进行功能强大的 CVD 宏基因组范围关联研究 (MWAS)。 在大规模部署 MWAS 之前,必须克服一些障碍。首先,我们必须减少 对约 50,000 人的数千个微生物组物种进行基因分型的计算成本不可行。第二, 为了确保关联的统计测试不会出现高误报率,我们需要统计模型 调整宿主内部和宿主之间的微生物种群结构。该提案的目标是创建一个 研究工具箱来应对这些挑战以及确定之间假定的机制联系 微生物组和 CVD。我们将开发数据结构和查询算法以加速基因型估计 以及用于准确关联测试的混合效应模型。所有代码和方法都将开源并设计 可以轻松扩展到其他微生物群。 将这些工具应用于我们的队列,我们​​的目标是确定负责的特定微生物基因和途径 微生物与 CVD 之间的已知关联。我们还期望发现被遗漏的新关联 因为队列太小或者他们的分析方法忽略了基因内容的差异 跨菌株。这些发现将用于识别微生物生物标志物,用于 CVD 诊断和个性化治疗 治疗或设计微生物组靶向药物、益生元和益生菌来治疗心脏病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KATHERINE S. POLLARD其他文献

KATHERINE S. POLLARD的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KATHERINE S. POLLARD', 18)}}的其他基金

Discovering human divergent activity-regulated elements using comparative, computational, and functional approaches
使用比较、计算和功能方法发现人类不同活动调节的元素
  • 批准号:
    10779701
  • 财政年份:
    2023
  • 资助金额:
    $ 70.73万
  • 项目类别:
Linking microbiome genetic variants with cardiovascular phenotypes in 50,000 individuals
将 50,000 名个体的微生物组遗传变异与心血管表型联系起来
  • 批准号:
    10672312
  • 财政年份:
    2022
  • 资助金额:
    $ 70.73万
  • 项目类别:
Core B: Integrative Data-Science Core
核心 B:综合数据科学核心
  • 批准号:
    10670335
  • 财政年份:
    2021
  • 资助金额:
    $ 70.73万
  • 项目类别:
Core B: Integrative Data-Science Core
核心 B:综合数据科学核心
  • 批准号:
    10271125
  • 财政年份:
    2021
  • 资助金额:
    $ 70.73万
  • 项目类别:
Core B: Integrative Data-Science Core
核心 B:综合数据科学核心
  • 批准号:
    10461841
  • 财政年份:
    2021
  • 资助金额:
    $ 70.73万
  • 项目类别:
Resolving single-cell brain regulatory elements with bulk data supervised models
用批量数据监督模型解决单细胞大脑调节元件
  • 批准号:
    10362579
  • 财政年份:
    2020
  • 资助金额:
    $ 70.73万
  • 项目类别:
Resolving single-cell brain regulatory elements with bulk data supervised models
用批量数据监督模型解决单细胞大脑调节元件
  • 批准号:
    10579845
  • 财政年份:
    2020
  • 资助金额:
    $ 70.73万
  • 项目类别:
Resolving single-cell brain regulatory elements with bulk data supervised models
用批量数据监督模型解决单细胞大脑调节元件
  • 批准号:
    10007660
  • 财政年份:
    2020
  • 资助金额:
    $ 70.73万
  • 项目类别:
Core B: Advanced Bioinformatics Core
核心 B:高级生物信息学核心
  • 批准号:
    10471985
  • 财政年份:
    2019
  • 资助金额:
    $ 70.73万
  • 项目类别:
Core B: Advanced Bioinformatics Core
核心 B:高级生物信息学核心
  • 批准号:
    10006186
  • 财政年份:
    2019
  • 资助金额:
    $ 70.73万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 70.73万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.73万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 70.73万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.73万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 70.73万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 70.73万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.73万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 70.73万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 70.73万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.73万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了