Automated imaging analysis tools to guide clinical decision making in brain tumor patients
自动成像分析工具指导脑肿瘤患者的临床决策
基本信息
- 批准号:10521259
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-06 至 2024-12-05
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdjuvant ChemotherapyAdoptedAdoptionAffectAftercareAlgorithmsBrainBrain NeoplasmsCaringClassificationClinicalClinical DataClinical TrialsCollaborationsComplexComputer softwareControl GroupsDataData SetDatabasesDependenceDiagnosisDiseaseDisease ManagementDisease ProgressionDoseEnsureEnvironmentEvaluationExcisionFaceFutureGlioblastomaGoalsHigh Performance ComputingImageImage AnalysisImaging DeviceInformation SystemsInterobserver VariabilityInterventionIntuitionLanguageLesionLongterm Follow-upMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of brainManualsMeasurementMedical ImagingMethodsMonitorNewly DiagnosedOperative Surgical ProceduresPatient CarePatient MonitoringPatient imagingPatient-Focused OutcomesPatientsPharmaceutical PreparationsPhasePhysiciansPlayProgression-Free SurvivalsRadiation OncologistRadiation therapyRadiology SpecialtyReaderRecurrenceRecurrent tumorReportingResearchResearch ProposalsResourcesRoleScanningSliceStandardizationStructureSystemTestingTrainingTumor VolumeUnited StatesUniversitiesValidationaggressive therapyautomated image analysisautomated segmentationchemoradiationclinical decision-makingcohortconvolutional neural networkdeep learningdisease classificationefficacy evaluationfollow-upimaging modalityimplementation frameworkimprovedmachine learning algorithmmultidisciplinarynetwork architecturenovel therapeuticspersonalized medicineprediction algorithmpredictive toolsquantitative imagingrecurrent neural networkresponsesegmentation algorithmstandard of caresuccesstooltreatment effecttreatment strategytumortumor progressiontwo-dimensionaluser-friendly
项目摘要
Project Summary
Glioblastoma (GBM) is a common and aggressive form of brain cancer affecting up to 20,000 new
patients in the US every year. Standard of care therapies include stereotactic surgical resection, radiation
therapy, and adjuvant chemotherapy. After initial treatment, patient monitoring is guided by standard MR imaging
performed at routine intervals. Despite these rigorous therapies, current median survival is only 15 months.
Imaging is a central part of brain tumor management, but MRI findings in brain tumor patients can be challenging
to interpret and is further confounded by interpretation variability. Accurate interpretation of imaging is particularly
important during the post-treatment phase of patient care as it can help clinicians proactively manage disease
through early, precise characterization of true tumor recurrence. Disease-specific structured reporting systems
attempt to reduce variability in imaging results by implementing well-defined imaging criteria and standardized
language. The Brain Tumor Reporting and Data System (BT-RADS), developed at Emory University, is one such
framework streamlined for clinical workflows and includes quantitative criteria for more objective evaluation of
follow-up imaging. While BT-RADS has had success with clinical adoptability, it still faces hurdles reducing
interobserver variability and improving objective classification of disease state.
This proposed study addresses an unmet need for unbiased, quantitative metrics for robust, objective
interpretation of follow-up imaging for GBM patients. Where previous evaluative methods used two-dimensional,
representative MRI slices for evaluating the extent of tumor, we propose to develop a deep learning segmentation
tool, accurately calculating volumes of tumor after surgical resection, and trained from our expansive database
of patient data with contours manually drawn by radiation oncologists. Further, we propose to develop
computationally advanced software for predicting disease progression building upon the clinically developed BT-
RADS criteria. Such tools would assist physicians in caring for brain tumor patients through post-treatment
surveillance and guide future clinical decision making. In addition, we believe these quantitative metrics would
have unbounded potential in clinical trial settings where it may be difficult to evaluate the efficacy of novel
therapeutics for GBM. Therefore, these assistive tools will be tested on clinical trial data to determine if they are
superior to conventional measurements alone.
A fundamental goal of this proposal is ensuring the quantitative tools we develop are applicable for
clinicians in their daily lives. Therefore, an effort will be made to collaborate extensively with clinicians to house
the algorithms in sleek, intuitive software for physicians to utilize. Through the multidisciplinary environment, high
performance computing, and clinical resources we have available, we believe this proposal will be successful in
developing clinically assistive tools for unbiased, objective monitoring of GBM patients in clinical settings and
evaluation of novel therapies in research settings.
项目摘要
胶质母细胞瘤(GBM)是一种常见的侵袭性脑癌,
美国每年都有患者。标准治疗包括立体定向手术切除、放射治疗
治疗和辅助化疗。初始治疗后,患者监测由标准MR成像指导
以常规间隔进行。尽管有这些严格的治疗,目前的中位生存期只有15个月。
成像是脑肿瘤治疗的核心部分,但脑肿瘤患者的MRI结果可能具有挑战性
解释,并进一步混淆了解释的可变性。对成像的准确解释尤其重要。
在患者护理的治疗后阶段非常重要,因为它可以帮助临床医生积极管理疾病
通过早期精确的肿瘤复发特征。特定疾病结构化报告系统
尝试通过实施明确定义的成像标准和标准化的
语言埃默里大学开发的脑肿瘤报告和数据系统(BT-RADS)就是这样一个系统。
简化了临床工作流程的框架,包括更客观评价
后续成像。虽然BT-RADS在临床上取得了成功,但它仍然面临着减少
观察者间变异性和改善疾病状态的客观分类。
这项拟议的研究解决了一个未满足的需求,即对稳健、客观、
GBM患者的随访成像的解释。以前的评估方法使用二维,
代表性的MRI切片用于评估肿瘤的程度,我们建议开发一种深度学习分割方法,
工具,精确计算手术切除后的肿瘤体积,并从我们庞大的数据库中进行训练
放射肿瘤学家手工绘制的患者数据轮廓。此外,我们建议发展
先进的计算软件,用于预测疾病进展的基础上,临床开发的BT-
RADS标准。这些工具将有助于医生通过后期治疗来照顾脑肿瘤患者
监测和指导未来的临床决策。此外,我们认为这些量化指标将
在临床试验环境中具有无限的潜力,在临床试验环境中可能难以评价新的
GBM的治疗方法。因此,这些辅助工具将在临床试验数据上进行测试,以确定它们是否
上级单独的常规测量。
该提案的一个基本目标是确保我们开发的定量工具适用于
临床医生在日常生活中。因此,将努力与临床医生广泛合作,
这些算法被整合到一个简洁直观的软件中供医生使用。通过多学科环境,高
性能计算和我们可用的临床资源,我们相信这项建议将取得成功,
开发临床辅助工具,用于在临床环境中对GBM患者进行公正客观的监测,
在研究环境中评价新疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karthik Ramesh其他文献
Karthik Ramesh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karthik Ramesh', 18)}}的其他基金
Automated imaging analysis tools to guide clinical decision making in brain tumor patients
自动成像分析工具指导脑肿瘤患者的临床决策
- 批准号:
9911574 - 财政年份:2019
- 资助金额:
$ 4.77万 - 项目类别:
Automated imaging analysis tools to guide clinical decision making in brain tumor patients
自动成像分析工具指导脑肿瘤患者的临床决策
- 批准号:
10308072 - 财政年份:2019
- 资助金额:
$ 4.77万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Research Grant