Understanding the dynamics of cochlear amplification
了解耳蜗放大的动力学
基本信息
- 批准号:10531629
- 负责人:
- 金额:$ 24.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:Acoustic TraumaAddressAffectAlgorithmsAmplifiersAnimal ModelAnimalsApicalAuditory systemBackBasilar MembraneBiological AssayCaliforniaCharacteristicsCochleaCommunitiesCompensationComplexDataData AnalysesDependenceDevelopmentDiagnosisDiagnostic testsEnvironmentExhibitsFacultyFrequenciesGoalsHearingHearing AidsHearing TestsHumanImpairmentIndividualInstitutionInterventionKnowledgeLocationMeasurableMeasurementMeasuresMechanicsMentorsModelingMotionMotorMusNeurosciencesNon-Invasive DetectionNonlinear DynamicsOptical Coherence TomographyOrgan of CortiOuter Hair Cell of the Organ of the CortiOuter Hair CellsPeripheralPhasePositioning AttributeProcessRecording of previous eventsResearchRoleSensorineural Hearing LossShapesSignal TransductionSpeechSpeech IntelligibilityStimulusStructureStudy modelsSurfaceSystemTestingTheoretical modelTimeTrainingTransgenic MiceUniversitiesWorkauditory processingcareer developmentimprovedin vivoinsightmathematical modelmechanical propertiesmouse modelmutantnoninvasive diagnosisnovel diagnosticsotoacoustic emissionpreservationpublic health relevanceresponseskillssoundtooltransmission processtreatment strategy
项目摘要
PROJECT SUMMARY
The cochlea acts as a nonlinear amplifier that boosts mechanical sensitivity and frequency tuning at low but
not high stimulus levels. Although cochlear responses to tones have been well studied, relatively little is known
about the dynamic (i.e., time-varying) aspects of this amplification process, such as its delays and associated
time constants. These characteristics of the amplifier are especially relevant for understanding details of how
dynamic stimuli, such as speech, are encoded by the peripheral auditory system. The proposed research
combines the complementary approaches of intracochlear vibrometry, otoacoustic emissions (OAEs), and
theoretical modeling to study the dynamics of nonlinear cochlear amplification in animal models. The K99
mentored research will investigate the temporal dynamics and active micromechanics of the amplifier through
in vivo vibratory measurements obtained at two locations within the organ of Corti, near the top and bottom
surfaces of the outer hair cells—the cellular motors of the cochlear amplifier. Parallel measurements of OAEs
will probe their ability to serve as noninvasive assays of the dynamical features of the amplification process.
Mathematical models will help to understand the mechanisms of the cochlear amplification delay and its role in
shaping OAEs. The R00 independent research will extend the K99-phase findings by further dissecting the
mechanisms underlying the dynamical features of cochlear amplification through studies in animals with well-
defined damage (acoustic trauma) or abnormality in cochlear structures (transgenic mice).
These results are expected to have a high impact because they will be first to reveal the mechanisms
underlying the dynamics of cochlear amplification. By relating the OAE results to the vibrometry data in the
same animals, the work will establish the utility of OAEs as noninvasive assays of the dynamics of cochlear
processing. In the broader context, these data will provide insights into contributions of peripheral processing
to temporal phenomena of hearing that degrade with sensory hearing loss and thus will lay the necessary
groundwork for developing intervention strategies aimed at restoring auditory processing in the realistic
dynamic environments.
The K99 phase of the proposed research will aid the candidate’s career development by introducing her to
in vivo cochlear vibrometry and by expanding her limited training in mathematical modeling. Together with her
extensive background in OAE measurements, these new skills will put the candidate in a strong position to
work independently toward her long-term goals of advancing our understanding of cochlear mechanics and
exploiting its manifestation in OAE signals to improve noninvasive tests of hearing. The University of Southern
California is an outstanding environment for the K99 research because the institution has an active hearing
neuroscience community, including the mentors, recognized experts in cochlear mechanics, and other faculty.
项目总结
耳蜗起到了非线性放大器的作用,提高了机械灵敏度和频率调谐在低但
不是高刺激水平。虽然对声调的耳蜗反应已经有了很好的研究,但相对来说知之甚少
关于这一放大过程的动态(即,时变)方面,例如它的延迟和相关
时间常数。放大器的这些特性对于理解如何
动态刺激,如语音,由外围听觉系统编码。拟议的研究
结合了耳内测振、耳声发射(OAES)和
在动物模型中建立理论模型来研究非线性耳蜗声放大的动力学。K99
指导性研究将通过以下方式研究放大器的时间动力学和主动微观力学
在Corti器官内靠近顶部和底部的两个位置进行活体振动测量
外毛细胞的表面--耳蜗放大器的细胞马达。耳声发射的平行测量
将探索它们作为扩增过程动态特征的非侵入性分析的能力。
数学模型将有助于理解耳蜗放大延迟的机制及其在脑电活动中的作用
塑造OAE。R00独立研究将扩展K99阶段的发现,进一步剖析
通过对患有良好听力障碍的动物的研究,探讨其耳蜗声放大的动力学特征。
耳蜗结构的明确损伤(听觉损伤)或异常(转基因小鼠)。
这些结果预计将产生很大的影响,因为它们将率先揭示这些机制
在耳蜗放大的动力学基础上。通过将OAE结果与
同样的动物,这项工作将确立耳声发射作为耳蜗动力学的非侵入性分析的实用性
正在处理。在更广泛的背景下,这些数据将提供对外围处理的贡献的洞察
随着感觉性听力丧失而退化的暂时性听力现象,因此将为
开发干预策略的基础,旨在恢复现实中的听觉处理
动态环境。
拟议研究的K99阶段将通过向候选人介绍以下方面来帮助她的职业发展
通过扩大她有限的数学建模训练,她在活体耳蜗测振方面取得了很大进展。和她一起
在耳声发射测量方面有广泛的背景,这些新技能将使应聘者在
独立地朝着她的长期目标努力,即提高我们对耳蜗力学和
利用其在耳声发射信号中的表现来改进听力的非侵入性测试。南加州大学
加州是K99研究的优秀环境,因为该机构拥有积极的听证会
神经科学界,包括导师,公认的耳蜗力学专家和其他教职员工。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karolina Charaziak其他文献
Karolina Charaziak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karolina Charaziak', 18)}}的其他基金
Understanding the dynamics of cochlear amplification
了解耳蜗放大的动力学
- 批准号:
10168888 - 财政年份:2020
- 资助金额:
$ 24.75万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Research Grant