Molecular Mechanisms of Platelet Alpha Granule Biogenesis
血小板α颗粒生物发生的分子机制
基本信息
- 批准号:10528492
- 负责人:
- 金额:$ 38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-15 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAlpha GranuleAngiogenesis InhibitorsArthrogryposisBiochemicalBiogenesisBloodBlood Coagulation DisordersBlood PlateletsBone MarrowCRISPR/Cas technologyCardiovascular DiseasesCarrier ProteinsCell Culture TechniquesCellsCellular biologyChildCholestasisCollaborationsComplexCytoplasmic GranulesData SetDevelopmentDiseaseEndocytosisEndoplasmic ReticulumEndosomesGene TargetingGenesGeneticGenetic DiseasesGoalsGolgi ApparatusHealthHemorrhageHemostatic AgentsHemostatic functionHospitalsHumanHuman GeneticsImpairmentInflammationKnowledgeLettersLungLysosomesMalignant NeoplasmsMediatingMegakaryocytesMembrane ProteinsMethodsMolecularMorbidity - disease rateMutateMutationMyelofibrosisOrganellesPathway interactionsPatientsPhysiologicalPlatelet ActivationPlatelet aggregationPlayPolymersPopulationPositioning AttributePreventionProcessProtein BiosynthesisProteinsPublicationsPublishingResearchRoleSNAP receptorSiteSortingStrokeSyndromeSystemTestingThrombosisTimeUniversitiesVesicleVisualizationWashingtonWorkangiogenesisbiochemical toolsdesignexperimental studyinnovationinsightkidney dysfunctionmortalitymouse modelnovelnovel therapeutic interventionplatelet functionpolymerizationpopulation basedprecursor cellrecruitresponsesegregationstem cellssyntaxintime usetraffickingtranscriptome sequencingwound healing
项目摘要
PROJECT SUMMARY
Platelets play central roles in hemostasis and thrombosis. Platelet activation triggers secretion and release of contents
from α-granules, δ-granules and lysosomes that in turn leads to the recruitment and aggregation of additional platelets and
a myriad of physiological responses. While impaired platelet function is associated with disorders that manifest with
moderate to severe bleeding, excessive platelet aggregation is a major cause of morbidity and mortality due to its effect in
cardiovascular disease and stroke. Alpha-granules are crucial to these platelet functions both in health and disease. However,
in spite of the relevance of platelet α-granules for human health, remarkably little is known about their biogenesis. Therefore,
our goal is to understand the pathways and molecular mechanism responsible for the biogenesis of platelet α-granules.
Mutations in VPS33B, VPS16B and NBEAL2 cause the α-granule deficiency and bleeding manifestations observed in
patients suffering Arthrogryposis, Renal Dysfunction and Cholestasis (ARC) syndrome and Gray Platelet syndrome (GPS).
However, the mechanism of action of these proteins in α-granule biogenesis is a mystery. Consequently, a major objective
of this proposal is to address the function of VPS33B, VPS16B and NBEAL2 at the cellular and molecular level.
Platelet α-granules are produced in the megakaryocyte, the platelet precursor cell. In addition to soluble proteins taken
up by endocytosis, α-granules contain hundreds of proteins synthesized by the megakaryocyte. The pathways taken by
megakaryocyte-synthesized proteins to reach the α-granule are unknown. In this proposal, we show that the sorting
endosome is a fundamental precursor organelle in α-granule formation that is used by megakaryocyte-synthesized proteins.
This implies a more complex biogenesis mechanism than previously anticipated. In this application we build on our novel
findings, hypothesizing that fundamental components of the α-granule biogenesis machinery work at the megakaryocyte
sorting endosome by regulating vesicular trafficking. We propose two specific aims. Aim 1 will determine the transport
pathways followed by newly synthesized α-granule soluble and membrane proteins using an innovative method to
synchronize and evaluate transport of proteins to α-granules in real time. We will test the hypothesis that there are multiple,
separate pathways followed by megakaryocyte-synthesized α-granule proteins and test whether α-granules segregate into
distinct populations. Aim 2 will define the molecular mechanism of platelet α-granule biogenesis by: (i) testing the
hypothesis that VPS33B and VPS16B regulate the SNARE-mediated fusion of Golgi-derived vesicles containing α-granule
cargo with sorting endosomes; (ii) addressing the function of novel components of the transport machinery identified here,
including a new complex that coordinates α-granule cargo traffic through sorting endosomes; (iii) testing the hypothesis
that NBEAL2 mediates the exit of α-granule cargo from sorting endosomes in association with actin and Vac14.
This research will transform our view of the platelet α-granule field by bringing about a highly mechanistic
understanding of the biogenesis process. Our work will yield insights into the bleeding and myelofibrosis manifestations
observed in ARC and GPS patients. Ultimately, this knowledge will help design new strategies for the treatment of bleeding
and thrombotic disorders and other diseases in which α-granules have emerging roles including angiogenesis and cancer.
项目总结
血小板在止血和血栓形成中起着核心作用。血小板活化触发内容物的分泌和释放
来自α颗粒、δ颗粒和溶酶体,进而导致额外的血小板和
无数的生理反应。而血小板功能受损与表现为
中到重度出血,血小板过度聚集是发病率和死亡率的主要原因,因为它影响
心血管疾病和中风。在健康和疾病中,阿尔法颗粒对这些血小板功能都是至关重要的。然而,
尽管血小板α颗粒与人类健康相关,但人们对其生物发生机制知之甚少。因此,
我们的目标是了解血小板α颗粒生物发生的途径和分子机制。
VPS33B、VPS16B和NBEAL2基因突变导致α颗粒缺陷和出血表现
患有关节紊乱、肾功能不全和胆汁淤积(ARC)综合征和灰色血小板综合征(GPS)的患者。
然而,这些蛋白质在α颗粒生物发生中的作用机制仍然是一个谜。因此,一个主要目标是
VPS33B、VPS16B和NBEAL2在细胞和分子水平上的功能。
血小板α颗粒产生于巨核细胞,即血小板前体细胞。除了服用的可溶性蛋白质外
通过内吞作用,α颗粒含有数以百计的由巨核细胞合成的蛋白质。他走过的小路
巨核细胞合成的蛋白质到达α颗粒是未知的。在这个提案中,我们展示了排序
内小体是巨核细胞合成的蛋白质所使用的α颗粒形成的基本前体细胞器。
这意味着一种比先前预期更复杂的生物发生机制。在这个应用程序中,我们以我们的小说为基础
发现,假设α颗粒生物发生机制的基本组件在巨核细胞中起作用
通过调节囊泡运输来分选内体。我们提出了两个具体目标。目标一号将决定运输
利用一种创新的方法研究新合成的α颗粒可溶性蛋白和膜蛋白所遵循的途径
实时同步和评估蛋白质到α颗粒的运输。我们将检验这一假设,即存在多个,
分离巨核细胞合成的α颗粒蛋白所遵循的途径,并测试α颗粒是否分离到
不同的种群。目的2将通过以下方法确定血小板α-颗粒生物发生的分子机制:(I)检测
VPS33B和VPS16B调控含α颗粒高尔基体小泡SNARE融合的假说
具有分拣内体的货物;(2)处理此处确定的运输机械的新部件的功能,
包括一个新的复合体,通过分选内含体来协调α-Granule货物运输;(Iii)检验假设
NbEAL2与肌动蛋白和Vac14结合,介导α颗粒货物从分选内小体中退出。
这项研究将改变我们对血小板α颗粒领域的看法,带来一种高度机械性的
对生物发生过程的理解。我们的工作将对出血和骨髓纤维化的表现有深入的了解
在ARC和GPS患者中观察到。最终,这些知识将有助于设计治疗出血的新策略。
以及血栓性疾病和其他疾病,α颗粒在其中具有新的作用,包括血管生成和癌症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Santiago Mauro Di Pietro其他文献
Santiago Mauro Di Pietro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Santiago Mauro Di Pietro', 18)}}的其他基金
Molecular Mechanisms of Platelet Alpha Granule Biogenesis
血小板α颗粒生物发生的分子机制
- 批准号:
10319019 - 财政年份:2020
- 资助金额:
$ 38万 - 项目类别:
Molecular Mechanisms of Pigmentation in Health and Disease
健康和疾病中色素沉着的分子机制
- 批准号:
10078277 - 财政年份:2018
- 资助金额:
$ 38万 - 项目类别:
Molecular Mechanism of Platelet Dense Granule Biogenesis
血小板致密颗粒生物发生的分子机制
- 批准号:
8478364 - 财政年份:2012
- 资助金额:
$ 38万 - 项目类别:
Molecular Mechanism of Platelet Dense Granule Biogenesis
血小板致密颗粒生物发生的分子机制
- 批准号:
8238919 - 财政年份:2012
- 资助金额:
$ 38万 - 项目类别:
Molecular Mechanism of Platelet Dense Granule Biogenesis
血小板致密颗粒生物发生的分子机制
- 批准号:
8427312 - 财政年份:2012
- 资助金额:
$ 38万 - 项目类别:
Molecular Mechanism of Platelet Dense Granule Biogenesis
血小板致密颗粒生物发生的分子机制
- 批准号:
8793801 - 财政年份:2012
- 资助金额:
$ 38万 - 项目类别:
Molecular Mechanism of Platelet Dense Granule Biogenesis
血小板致密颗粒生物发生的分子机制
- 批准号:
8606881 - 财政年份:2012
- 资助金额:
$ 38万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Research Grant