Rectifying splicing mutations in blood disorders by gene editing
通过基因编辑纠正血液疾病中的剪接突变
基本信息
- 批准号:10531577
- 负责人:
- 金额:$ 85.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-20 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:5&apos Splice SiteAdultAllelesAutologous TransplantationBloodBlood CellsBone Marrow TransplantationCD34 geneCell CycleCell physiologyCellsDNA RepairDependenceDevelopmentDiseaseElectroporationEngraftmentErythrocytesErythroidGasesGene AbnormalityGene ExpressionGene ModifiedGenesGenetic DiseasesGlobinGoalsHematological DiseaseHematopoiesisHematopoietic stem cellsHemoglobinIn VitroInheritedMediatingMessenger RNAMethodsModelingModificationMutationMyelogenousNonhomologous DNA End JoiningOutcomePathogenicityPathway interactionsPatientsPatternPersonsProcessProductionProtocols documentationRNA SplicingReagentRecoveryRegulatory ElementRibonucleoproteinsShwachman-Diamond syndromeSiteSite-Directed MutagenesisSpecificitySystemTherapeuticTransfusionUncertaintyUntranslated RNAbase editingbeta Thalassemiagene repairgene therapygenome editinggenome-widegenotoxicityhomologous recombinationimprovedinnovationinsertion/deletion mutationmutantnucleasepreservationreconstitutionrepairedrestorationstem cell functiontargeted treatmenttherapeutic developmenttherapeutic genome editing
项目摘要
Inherited blood disorders are especially favorable targets for therapeutic genome editing in
that ex vivo modification of patient hematopoietic stem cells (HSCs) followed by autologous
transplantation can result in lifelong recovery of normal blood cell production. Recently we
developed an improved version of SpCas9 (3xNLS-SpCas9) and an efficient electroporation protocol
for genome editing of CD34+ hematopoietic stem and progenitor cells (HSPCs) using SpCas9
ribonucleoprotein (RNP) that leads to highly efficient on-target gene modification, preservation of
HSC function and undetectable off-target editing.
In principle , homologous recombination (HR) or base editing could be harnessed for the precise
correction of disease-associated mutations. However, the requirement for co-delivery of donor
template sequence, the cell cycle dependence of HR-based gene repair, and the competing
nonhomologous end joining/microhomology mediated end joining mutagenic repair pathways
complicate achieving efficient HR in HSCs. Base editing Is currently limited in its targeting range
with uncertainty about potential genotoxicity and HSC efficiency. Nuclease-induced predictable
end-joining repair (with indels) is a highly efficient means of gene modification, and could
itself be therapeutic depending on the allelic outcome. This strategy may be particularly
effective for noncoding mutations that impact regulatory elements, such as those that dictate the
pattern of mRNA splicing. We hypothesize that genome editing, by directing efficient non-templated
end-joining DNA repair in HSCs, could restore gene expression and provide durable therapy for
inherited blood disorders associated with splicing mutations.
Two of the most common mutations associated with transfusion-dependent β-thalassemia are HBB IVS1-
11OG>A and IVS2-654C> T which introduce intronic aberrant splice acceptor and donor sites
respectively.
Using SpCas9 and LbCas12a RNPs, we have successfully disrupted these inappropriate regulatory
elements in HSPCs from multiple patient donors. The erythrocytes differentiated in vitro from
these nuclease-treated cells display robust increase in normally spliced HBB mRNA and restored
adult hemoglobin (HbA) expression, suggesting that this is a potent strategy for therapeutic
development. In Aims 1 & 2 we will develop Cas9 and Cas12a editing reagents for these splicing
mutations through nuclease optimization, unbiased genome-wide off-target analysis, and assessment
of HSC editing rates through xenoengraftment of edited β-thalassemia patient HSPCs. In Aim 3, we
will develop efficient strategies for the non-templated gene editing repair of splice junction
disrupting mutations for the IVS2+2T>C mutation in SBOS commonly associated with Shwachman
Diamond syndrome. The successful completion of these studies w/1 define editing approaches for the
efficient HSC repair of a range of pathogenic splicing mutations that impact hematopoiesis and enable the
development of targeted reagents based on existing nuclease platforms for definitive gene therapy.
遗传性血液疾病是治疗性基因组编辑的特别有利目标
患者造血干细胞(HSCs)的体外修饰和自体移植
移植可以导致终生恢复正常的血细胞生产。最近我们
开发了SpCas9的改进版本(3xNLS-SpCas9)和高效的电穿孔协议
使用SpCas9编辑CD34+造血干/祖细胞(HSPC)的基因组
核糖核蛋白(RNP),导致高效的靶向基因修饰,保存
HSC功能和不可检测的非目标编辑。
原则上,可以利用同源重组(HR)或碱基编辑来精确地
纠正与疾病相关的突变。然而,对捐赠者联合交付的要求
模板序列、基于HR的基因修复的细胞周期依赖性和竞争
非同源末端连接/微同源介导的末端连接突变修复途径
使HSC中实现高效的人力资源复杂化。基础编辑目前仅限于其目标范围
潜在的遗传毒性和HSC效率的不确定性。核酸酶诱导的可预测性
末端连接修复(与indels)是一种高效的基因修饰手段,可以
根据等位基因的结果,它本身是有治疗作用的。这一策略可能特别
对影响调控元件的非编码突变有效,例如那些规定
信使核糖核酸剪接模式。我们假设基因组编辑,通过引导高效的非模板化
HSCs末端连接DNA修复,可恢复基因表达并提供持久的治疗
与剪接突变相关的遗传性血液疾病。
与输血依赖型β-地中海贫血相关的两个最常见的突变是HBBIVS1-
引入内含子异常剪接受体和供体位点的11og>;A和IVS2-654C>;T
分别进行了分析。
使用SpCas9和LbCas12a RNP,我们已经成功地扰乱了这些不适当的监管
来自多个患者捐献者的HSPC中的元素。小鼠红细胞体外分化的实验研究
这些核酸酶处理的细胞显示出正常剪接的HBB mRNA的强劲增加和恢复
成人血红蛋白(HBA)的表达,表明这是一种有效的治疗策略
发展。在AIMS 1和2中,我们将开发用于这些剪接的Cas9和Cas12a编辑试剂
通过核酸酶优化、无偏见的全基因组非靶标分析和评估的突变
通过异种移植编辑的β-地中海贫血患者的HSC编码率。在目标3中,我们
将为剪接连接的非模板化基因编辑修复开发有效的策略
通常与Shwachman相关的SBOS患者IVS2+2T>;C突变的破坏性突变
钻石综合症。这些研究的成功完成确定了编辑方法
高效修复一系列影响造血的致病剪接突变并使
开发基于现有核酸酶平台的靶向试剂,用于明确的基因治疗。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genome-wide detection of CRISPR editing in vivo using GUIDE-tag.
- DOI:10.1038/s41467-022-28135-9
- 发表时间:2022-01-21
- 期刊:
- 影响因子:16.6
- 作者:Liang SQ;Liu P;Smith JL;Mintzer E;Maitland S;Dong X;Yang Q;Lee J;Haynes CM;Zhu LJ;Watts JK;Sontheimer EJ;Wolfe SA;Xue W
- 通讯作者:Xue W
Optimization of Nuclear Localization Signal Composition Improves CRISPR-Cas12a Editing Rates in Human Primary Cells.
- DOI:10.1089/genbio.2022.0003
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Kevin Luk;Pengpeng Liu;Jing Zeng;Yetao Wang;Stacy A. Maitland;Feston Idrizi;Karthikeyan Ponnienselvan;L. Zhu;J. Luban;D. E. Bauer;S. Wolfe
- 通讯作者:Kevin Luk;Pengpeng Liu;Jing Zeng;Yetao Wang;Stacy A. Maitland;Feston Idrizi;Karthikeyan Ponnienselvan;L. Zhu;J. Luban;D. E. Bauer;S. Wolfe
A brown fat-enriched adipokine, ASRA, is a leptin receptor antagonist that stimulates appetite.
ASRA 是一种富含棕色脂肪的脂肪因子,是一种瘦素受体拮抗剂,可刺激食欲。
- DOI:10.1101/2023.09.12.557454
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Huang,Lei;Liu,Pengpeng;Du,Yong;Pan,Dongning;Lee,Alexandra;Wolfe,ScotA;Wang,Yong-Xu
- 通讯作者:Wang,Yong-Xu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Evan Bauer其他文献
Daniel Evan Bauer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Evan Bauer', 18)}}的其他基金
Chemotherapy-free cure of hemoglobin disorders through base editing
通过碱基编辑无需化疗即可治愈血红蛋白疾病
- 批准号:
10754114 - 财政年份:2023
- 资助金额:
$ 85.55万 - 项目类别:
Comprehensive characterization of variants underlying heart and blood diseases with CRISPR base editing
通过 CRISPR 碱基编辑全面表征心脏和血液疾病的变异
- 批准号:
10296877 - 财政年份:2021
- 资助金额:
$ 85.55万 - 项目类别:
Comprehensive characterization of variants underlying heart and blood diseases with CRISPR base editing
通过 CRISPR 碱基编辑全面表征心脏和血液疾病的变异
- 批准号:
10473734 - 财政年份:2021
- 资助金额:
$ 85.55万 - 项目类别:
Comprehensive characterization of variants underlying heart and blood diseases with CRISPR base editing
通过 CRISPR 碱基编辑全面表征心脏和血液疾病的变异
- 批准号:
10627940 - 财政年份:2021
- 资助金额:
$ 85.55万 - 项目类别:
Gene editing ELANE to understand and treat severe congenital neutropenia
基因编辑 ELANE 了解和治疗严重先天性中性粒细胞减少症
- 批准号:
10580862 - 财政年份:2020
- 资助金额:
$ 85.55万 - 项目类别:
Therapeutic BCL11A enhancer gene editing to induce fetal hemoglobin in β-hemoglobinopathy patients
治疗性 BCL11A 增强子基因编辑诱导 β 血红蛋白病患者胎儿血红蛋白
- 批准号:
10317505 - 财政年份:2020
- 资助金额:
$ 85.55万 - 项目类别:
Therapeutic BCL11A enhancer gene editing to induce fetal hemoglobin in β-hemoglobinopathy patients
治疗性 BCL11A 增强子基因编辑诱导 β 血红蛋白病患者胎儿血红蛋白
- 批准号:
10090251 - 财政年份:2020
- 资助金额:
$ 85.55万 - 项目类别:
Gene editing ELANE to understand and treat severe congenital neutropenia
基因编辑 ELANE 了解和治疗严重先天性中性粒细胞减少症
- 批准号:
10338097 - 财政年份:2020
- 资助金额:
$ 85.55万 - 项目类别:
相似海外基金
Mechanisms of Splice Site Selection in Health and Disease
健康和疾病中剪接位点选择的机制
- 批准号:
10797554 - 财政年份:2023
- 资助金额:
$ 85.55万 - 项目类别:
Quantitative and Predictive Analysis of 5' Splice Site Recognition by U1 snRNP using Massively Parallel Arrays
使用大规模并行阵列对 U1 snRNP 5 剪接位点识别进行定量和预测分析
- 批准号:
10460136 - 财政年份:2021
- 资助金额:
$ 85.55万 - 项目类别:
Quantitative and Predictive Analysis of 5' Splice Site Recognition by U1 snRNP using Massively Parallel Arrays
使用大规模并行阵列对 U1 snRNP 5 剪接位点识别进行定量和预测分析
- 批准号:
10311645 - 财政年份:2021
- 资助金额:
$ 85.55万 - 项目类别:
Uncovering Mechanisms of 5' Splice Site Fidelity
揭示 5 剪接位点保真度的机制
- 批准号:
10532793 - 财政年份:2020
- 资助金额:
$ 85.55万 - 项目类别:
How do RNA-binding proteins control splice site selection?
RNA 结合蛋白如何控制剪接位点选择?
- 批准号:
BB/T000627/1 - 财政年份:2020
- 资助金额:
$ 85.55万 - 项目类别:
Research Grant
Mechanism of Splice Site Recognition by the U2AF/SF1 Protein Complex
U2AF/SF1 蛋白复合物的剪接位点识别机制
- 批准号:
553974-2020 - 财政年份:2020
- 资助金额:
$ 85.55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Uncovering Mechanisms of 5' Splice Site Fidelity
揭示 5 剪接位点保真度的机制
- 批准号:
10316181 - 财政年份:2020
- 资助金额:
$ 85.55万 - 项目类别:
Mechanisms of Splice Site Selection in Health and Disease
健康和疾病中剪接位点选择的机制
- 批准号:
10769989 - 财政年份:2019
- 资助金额:
$ 85.55万 - 项目类别:
Mechanisms of Splice Site Selection in Health and Disease
健康和疾病中剪接位点选择的机制
- 批准号:
10808389 - 财政年份:2019
- 资助金额:
$ 85.55万 - 项目类别:
Mechanisms of Splice Site Selection in Health and Disease
健康和疾病中剪接位点选择的机制
- 批准号:
10585911 - 财政年份:2019
- 资助金额:
$ 85.55万 - 项目类别: