The Role of the Organ of Corti for Cochlear Power Transmission
柯蒂氏器在耳蜗动力传输中的作用
基本信息
- 批准号:10531247
- 负责人:
- 金额:$ 43.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-15 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAffectAnimalsApicalBasilar MembraneBiophysicsCell CommunicationCell physiologyCellsChemicalsCochleaCollagen FiberComplexComputer ModelsComputer SimulationDataElectric StimulationEnsureEpitheliumFrequenciesFunctional disorderHair CellsHearingHumanImageIn SituIn VitroIndividualLabyrinthLinkLiquid substanceLocationMeasurementMeasuresMechanical StimulationMechanicsMethodsModelingMolecularMotionOptical Coherence TomographyOrganOrgan of CortiOrganellesOutcomeOuter Hair CellsPhysicsPlayPropertyPublic HealthQuality of lifeRadialResearchResolutionRoleScienceScientistSensorySeriesSideSpecific qualifier valueStructureSupporting CellSystemTechniquesTestingUnited StatesVelocimetriesbiophysical propertiescell motilitycomputer programdesignelectric impedanceelectrical potentialexperienceexperimental studyhearing impairmentimprovedin vivomechanical propertiesmechanotransductionneuralneuronal cell bodynovelresponsesoundtectorial membranetheoriestooltransmission processvibrationvirtual
项目摘要
Project Summary
One out of seven adults in the United States suffers difficulty in hearing. Most hearing loss is related to
inner ear dysfunction. A prominent signature of hearing loss is damage of outer hair cells, which can result in
40-60 dB of hearing loss. Outer hair cells are known as cellular actuators that are needed for cochlear
amplification. Outer hair cells are situated in the cochlear sensory epithelium called the organ of Corti. The
organ of Corti is sandwiched between two collagen-fiber-rich matrices called the basilar and tectorial
membranes. Traditionally, studies on cochlear amplification were focused on motion of the basilar membrane,
but new evidence is suggesting that we have been seeing only one-side of the story (basal-side of the outer
hair cells). Recent advancement in imaging and velocimetry techniques enables scientists to ‘see-through’ the
cochlea so that they can capture organ of Corti motion beyond the basilar membrane. New observations using
recent techniques are both exciting and puzzling. For example, at the apical side of the outer hair cell,
vibrations are broadly tuned as compared to basilar membrane motion or neural responses. Functional
consequences of the incongruence between mechanical and neural tuning are unclear. Two challenges are
impeding the progress of hearing science regarding cochlear amplification. First, despite recent progress, the
resolution of velocity measurement techniques is insufficient to specify individual outer hair cells. Second, in
experiments with live animals, there are very limited means to control outer hair cell physiology.
This project resolves those two challenges. We have developed novel in vitro methods that enable us
to measure the motion of individual outer hair cells under electrically, chemically and mechanically controlled
conditions. Experimental outcomes are explained and extended by our Virtual Cochlea—a set of computer
models to analyze cochlear mechano-transduction. By combining these experiments and the computer
models, we can ensure scientific rigor of our research while minimizing animal use. For transparency, acquired
data and computer programs will be made available to public.
The three aims of this proposal are designed to quantify the most needed biophysical attributes needed
to address open questions regarding cochlear amplification and tuning. They are 1) the deflection of stereocilia
(mechano-receptive organelle of the hair cells) due to outer hair cell motility, 2) mechanical properties of the
tectorial membrane and the Deiters cell (structures in series with the outer hair cell), and 3) the operating range
of stereocilia mechano-transduction (stereocilia deflection to saturate hair cell mechano-transduction). The
Virtual Cochlea is validated by comparing with the measurements of three aims before testing our overarching
hypothesis—the organ of Corti must be as compliant as the outer hair cells for the outer hair cells to generate
power for cochlear amplification.
项目摘要
美国七个成年人中有一个在听力方面很难。大多数听力损失与
内耳功能障碍。听力损失的突出签名是外毛细胞的损害,这可能导致
40-60 dB的听力损失。外毛细胞被称为细胞致动器,是人工耳蜗所需的
放大。外毛细胞位于称为Corti器官的人工耳蜗感觉上皮。这
Corti的器官夹在两个称为基底和tecorial的胶原纤维的矩阵之间
膜。传统上,对耳蜗扩增的研究集中在基底膜的运动上,
但是新的证据表明,我们只看到了故事的一面(外部的基础侧
毛细胞)。影像学和速度计技术的最新进步使科学家能够“透明”
耳蜗,以便它们可以捕获基底膜以外的Corti运动器官。使用新观察
最近的技术既令人兴奋又难题。例如,在外毛细胞的顶端
与基底膜运动或神经反应相比,振动是广泛调整的。功能
机械调谐之间不一致的后果尚不清楚。有两个挑战
阻碍了听力科学关于人工耳蜗的进步。首先,最近的进步,
速度测量技术的分辨率不足以指定单个外毛细胞。第二,在
对活动物进行的实验,控制外毛细胞生理的方法非常有限。
该项目解决了这两个挑战。我们已经开发了新颖的体外方法,使我们能够
测量在电,化学和机械控制下单个外毛细胞的运动
状况。我们的虚拟耳蜗解释和扩展了实验结果 - 一组计算机
分析人工耳蜗机械转移的模型。通过结合这些实验和计算机
模型,我们可以确保我们的研究的科学严格性,同时最大程度地减少动物的使用。对于透明,被收购
数据和计算机程序将公开提供。
该提案的三个目标旨在量化所需的最需要的生物物理属性
解决有关人工耳蜗放大和调整的开放问题。它们是1)立体柔性的挠度
(毛细胞的机械受体细胞器)由于外毛细胞运动性,2)
Tecorial膜和Deiters细胞(与外毛细胞串联结构),3)操作范围
立体机械转移(立体旋转偏转至饱和毛细胞机械转导的偏转)。这
通过与三个目标的测量值进行比较,在测试我们的总体之前,可以通过与三个目标的测量进行比较来验证虚拟耳蜗
假设 - Corti的器官必须像外毛细胞一样合规,以生成外毛细胞
耳蜗放大的功率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jong-Hoon Nam其他文献
Jong-Hoon Nam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jong-Hoon Nam', 18)}}的其他基金
The role of the organ of Corti for cochlear power transmission
柯蒂氏器在耳蜗电力传输中的作用
- 批准号:
8940436 - 财政年份:2015
- 资助金额:
$ 43.97万 - 项目类别:
The role of the organ of Corti for cochlear power transmission
柯蒂氏器在耳蜗电力传输中的作用
- 批准号:
9087236 - 财政年份:2015
- 资助金额:
$ 43.97万 - 项目类别:
The Role of the Organ of Corti for Cochlear Power Transmission
柯蒂氏器在耳蜗动力传输中的作用
- 批准号:
10372625 - 财政年份:2015
- 资助金额:
$ 43.97万 - 项目类别:
The role of the organ of Corti for cochlear power transmission
柯蒂氏器在耳蜗电力传输中的作用
- 批准号:
9483292 - 财政年份:2015
- 资助金额:
$ 43.97万 - 项目类别:
The role of the organ of Corti for cochlear power transmission
柯蒂氏器在耳蜗电力传输中的作用
- 批准号:
9270013 - 财政年份:2015
- 资助金额:
$ 43.97万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:32200888
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:82173590
- 批准年份:2021
- 资助金额:56.00 万元
- 项目类别:面上项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 43.97万 - 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 43.97万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 43.97万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 43.97万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 43.97万 - 项目类别: