Mass transport in the inner-ear fluid
内耳液体中的质量运输
基本信息
- 批准号:10580498
- 负责人:
- 金额:$ 54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2027-11-30
- 项目状态:未结题
- 来源:
- 关键词:Acoustic StimulationAcousticsAdultAgitationAnimalsApicalAreaBiophysicsBloodBody FluidsCharacteristicsCochleaCochlear ductCochlear nucleusComputer ModelsCustomDataDiffusionDiseaseDistantDrug Delivery SystemsDrug TargetingElectric StimulationElectrodesExperimental DesignsFluid BalanceFrequenciesGene DeliveryGeometryGerbilsGoalsHealthHearingHourImageImplantIn VitroIndividualInheritedInjectionsKainic AcidLabyrinthLearningLengthLiquid substanceLocationLymphMeasuresMechanical StimulationMechanicsMethodsMicrofluidicsModelingMolecularMotionNeurotoxinsNoiseNoise-Induced Hearing LossOperative Surgical ProceduresOptical Coherence TomographyOuter Hair CellsPatternPerforationPharmaceutical PreparationsPhasePhysiologicalPublic HealthPumpQuality of lifeRadialResolutionRestSalicylic AcidsSensorineural Hearing LossSeriesSiteSourceStimulusStructureTemporal bone structureTestingTimeTissuesUnited Statesage relatedbasecell motilitydesignexperimental studygene therapyhearing impairmentimprovedin silicoin vivoinner ear diseasesinnovationinsightmechanotransductionminimally invasivemodels and simulationneuralnovelphysiologic modelprevent hearing lossresponseround windowsoundsound frequencysurgical risktheoriesvibrationvirtual
项目摘要
PROJECT SUMMARY
The inner-ear fluids, unlike other body fluids, are stationary and isolated from the rest of the body.
These characteristics give opportunities and challenges in maintaining inner-ear health and in treating inner-
ear diseases. Due to the blood-labyrinth barrier, systemic delivery of drugs to the inner ear is highly inefficient.
On the other hand, this isolation is an opportunity—drugs can be delivered locally with minimal off-target
concerns. Unfortunately, the potential advantage of local delivery has been difficult to capitalize on because of
the labyrinthine geometry of the inner ear. Application of drug at any location of the inner ear labyrinth filled
with stationary fluids results in high concentration at the application site without reaching distant locations. A
current remedy is to create surgical holes in the temporal bone to allow inner-ear fluids to flow despite the risk
of surgical damage. We propose minimally invasive and efficient drug delivery mechanism into the inner ear.
Specifically, we will develop a method to use sounds as the agitating source for cochlear drug delivery.
Recent data regarding OoC micromechanics are both exciting and controversial because new
observations do not fit well into existing frameworks for cochlear biophysics. For example, the outer hair cells
are widely-acknowledged as the actuator for cochlear amplification. However, the outer hair cells generate
force most efficiently at frequencies below the characteristic frequency at most cochlear locations, raising the
possibility of additional functions. The proposed project combines two topics that have previously been
investigated independently—mechanics and fluid homeostasis of the OoC. By combining these two subjects,
we propose the novel hypothesis that active outer hair cells enhance mass transport along the cochlea.
We will test the hypothesis with three aims that combine physiological and computational modeling
approaches. For Aim 1, experiments in live animals (gerbil) will be used to characterize the effect of sound and
outer-hair-cell motility on mass (neurotoxin) transport along the length of the cochlear duct. Aim 2 experiments
will use excised cochlear tissues implanted in a novel micro-fluidic chamber to characterize the OoC peristaltic
vibrations due to outer-hair-cell motility. For Aim 3, new biophysical computer models will simulate drug
delivery along the cochlea, thereby integrating physiological results from Aims 1 and 2.
Approximately one out of five adults in the United States has some degree of hearing loss. Multiple
common forms of hereditary, age-related, and noise-induced hearing loss are ascribed to malfunctions of
cochlear-fluid homeostasis. By investigating cochlear-fluid homeostasis from an innovative point of view
(mechanics), this project will provide an explanation on why hearing of high frequency sound is more
vulnerable. In the long term, we have ambition to provide a remedy to delay/prevent hearing losses related to
fluid-homeostasis.
项目摘要
与其他体液不同,内耳流体是固定的,并且与身体的其余部分分离。
这些特征为维持内耳健康和治疗内部健康方面带来了机会和挑战
耳病。由于血液临床屏障,将药物全身传递到内耳效率高。
另一方面,这种隔离是一个机会 - 可以以最少的脱离目标在本地交付毒品
关注。不幸的是,由于本地交付的潜在优势很难利用
内耳的迷宫几何形状。在内耳迷宫的任何位置使用药物
固定液体在应用地点导致高浓度,而无需到达遥远的位置。一个
当前的补救措施是在临时骨骼中创建手术孔,以使内耳液流动目的地风险
手术损伤。我们提出了最小的侵入性和有效的药物输送机制到内耳。
具体而言,我们将开发一种使用声音作为人工耳蜗递送的搅拌来源的方法。
有关OOC微力学的最新数据既令人兴奋又有争议,因为新
观察结果不太适合用于人工耳蜗生物物理学的现有框架。例如,外毛细胞
被广泛地被视为人工耳蜗的执行器。但是,外毛细胞会产生
在大多数人耳蜗的特征频率以下的频率下,强力最有效
其他功能的可能性。拟议的项目结合了两个以前的主题
独立研究了OOC的机电和流体稳态。通过结合这两个主题,
我们提出了一个新的假设,即活跃的外毛细胞增强了沿着耳蜗的质量转运。
我们将使用三个结合物理和计算建模的目标检验该假设
方法。对于AIM 1,将使用活动物(Gerbil)的实验来表征声音和
质量(神经毒素)沿着耳蜗长度的质量(神经毒素)转运的外发细胞运动。 AIM 2实验
将使用植入新的微富集室中的出色的耳蜗组织来表征OOC蠕动
由于外发细胞运动性而引起的振动。对于AIM 3,新的生物物理计算机模型将模拟药物
沿着耳蜗的交付,从而整合了目标1和2的身体结果。
在美国,大约有五分之一的成年人有一定程度的听力损失。多种的
遗传性,与年龄相关和噪音引起的听力损失的常见形式被分配给故障
耳蜗流体稳态。通过从创新的角度调查耳蜗流体稳态
(机械师),该项目将提供一个解释,说明为什么高频声音更多
易受伤害的。从长远来看,我们有雄心提供一种补救措施,以延迟/防止与听力损失有关
液体群体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jong-Hoon Nam其他文献
Jong-Hoon Nam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jong-Hoon Nam', 18)}}的其他基金
The role of the organ of Corti for cochlear power transmission
柯蒂氏器在耳蜗电力传输中的作用
- 批准号:
8940436 - 财政年份:2015
- 资助金额:
$ 54万 - 项目类别:
The Role of the Organ of Corti for Cochlear Power Transmission
柯蒂氏器在耳蜗动力传输中的作用
- 批准号:
10531247 - 财政年份:2015
- 资助金额:
$ 54万 - 项目类别:
The role of the organ of Corti for cochlear power transmission
柯蒂氏器在耳蜗电力传输中的作用
- 批准号:
9087236 - 财政年份:2015
- 资助金额:
$ 54万 - 项目类别:
The Role of the Organ of Corti for Cochlear Power Transmission
柯蒂氏器在耳蜗动力传输中的作用
- 批准号:
10372625 - 财政年份:2015
- 资助金额:
$ 54万 - 项目类别:
The role of the organ of Corti for cochlear power transmission
柯蒂氏器在耳蜗电力传输中的作用
- 批准号:
9270013 - 财政年份:2015
- 资助金额:
$ 54万 - 项目类别:
The role of the organ of Corti for cochlear power transmission
柯蒂氏器在耳蜗电力传输中的作用
- 批准号:
9483292 - 财政年份:2015
- 资助金额:
$ 54万 - 项目类别:
相似国自然基金
航天低温推进剂加注系统气液状态声学监测技术研究
- 批准号:62373276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于声学原位测试的金属表面液滴弹跳次数仿生调控
- 批准号:52350039
- 批准年份:2023
- 资助金额:80 万元
- 项目类别:专项基金项目
声学信号调控语音反馈脑网络在腭裂代偿语音康复中的机制研究
- 批准号:82302874
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
海洋声学功能材料发展战略研究
- 批准号:52342304
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:专项项目
相似海外基金
The Effect of Acoustic Enhancement of Slow-Wave Activity on Cognitive Control and Emotional Reactivity in Young Adults with Anxiety and Depression Symptoms
慢波活动的声学增强对患有焦虑和抑郁症状的年轻人的认知控制和情绪反应性的影响
- 批准号:
10501720 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
The Effect of Acoustic Enhancement of Slow-Wave Activity on Cognitive Control and Emotional Reactivity in Young Adults with Anxiety and Depression Symptoms
慢波活动的声学增强对患有焦虑和抑郁症状的年轻人的认知控制和情绪反应性的影响
- 批准号:
10678866 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Peripheral and central contributions to auditory temporal processing deficits and speech understanding in older cochlear implantees
外周和中枢对老年人工耳蜗植入者听觉时间处理缺陷和言语理解的贡献
- 批准号:
10444172 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Binaural cue sensitivity in children and adults with combined electric and acoustic stimulation
电和声相结合刺激儿童和成人的双耳提示敏感性
- 批准号:
10585556 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Multimodal Musical Stimulation for Healthy Neurocognitive Aging
多模式音乐刺激促进健康的神经认知衰老
- 批准号:
10351738 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别: