Gold nanoparticle Neurosensory Epiretinal Implant to Treat Photoreceptor Vision Loss
金纳米颗粒神经感觉视网膜前植入物治疗感光器视力丧失
基本信息
- 批准号:10528012
- 负责人:
- 金额:$ 23.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAge related macular degenerationBiological AssayBlindnessCalcium ChannelCell SurvivalClinicalDataDevelopmentDevicesDiseaseElectric StimulationElectrodesExposure toEyeEye diseasesFDA approvedFrequenciesGenerationsGoalsGoldHumanImageImplantLightLight CellLightingLocationLongevityMeasurementMeasuresMethodsMissionModelingMorphologyMusNanotechnologyNational Eye InstituteNeuronsOperative Surgical ProceduresOpticsPathologyPatientsPerceptionPhotoreceptorsPower SourcesProceduresPropertyProsthesisPublic HealthResearchResearch SupportResolutionRetinaRetinal DegenerationRetinal DystrophyRetinal Ganglion CellsRetinitis PigmentosaSignal TransductionStimulusStructureSystemTestingTissuesTransgenic MiceUltraviolet RaysVisible RadiationVisionVisual impairmentWorkbasebiomaterial compatibilitycalcium indicatorcell growthdesigndielectric propertyexperimental studyhuman stem cellsimage processingimplantable deviceimprovedinnovationlight effectsmouse modelmulti-electrode arraysnanoGoldnanoparticlenanowireneurosensoryneurotoxicnovelnovel therapeuticsoperationparticlepatient populationresponserestorationretinal prosthesisretinal stimulationsight restorationtherapy developmenttitanium dioxidetooltwo photon microscopyvoltage
项目摘要
PROJECT ABSTRACT
The retinal degenerative and dystrophic pathologies are major causes of blindness through the
lifespan. There is thus a critical need to find novel therapeutic devices which can address this
broad group of devastating diseases. Gold-nanoparticle neurosensory epiretinal stimulator
(GNES) is one such device, an implant without external power generation for stimulation of
remaining retinal ganglion cells to restore vision. Gold nanoparticles placed on a dielectric layer
have the potency to generate voltage on exposure to certain wavelengths. Intriguingly, these
phenomena can be exploited to use them as photoreceptors. The long-term goal is to address
the need for biocompatible neurosensory devices, modifying the design for high resolution and
long lasting GNES for patients with retinal dystrophy and degenerations. The proposed research
will assess an autonomous GNES that can passively mix the effect of optical signals and
directly excite remaining retinal ganglion cells. The rationale for this research is that gold-
nanoparticles are voltage generating particles without the need for image processing, power
source or extensive surgery for the intraocular and extraocular component. The objective in this
application is to modify GNES as a retinal ganglion cell stimulator. The overall hypothesis is
that gold nanoparticles on a dielectric platform can serve as a stand-alone neurostimulator that
excites RGCs and are biocompatible with lasting excitatory capability. The hypothesis will be
tested via two specific aims: 1. Assess the excitation of RGCs ex vivo using GNES device.
GNES excitation will be assessed using two methods. First with multielectrode array (MEA) with
human stem cell induced RGCs growth over GNES. In addition, we will use Genetically
Encoded Calcium Indicator (GECI) mice crossed with rd1 mice which lack photoreceptors. We
will test the GNES response to different wavelengths and spatial resolution. 2. Determine the
feasibility of refined GNES with Light Shutter Valve (LSV). One of the concerns in electrical
stimulation is overheating the system or neurotoxic effect of constant stimulation. The effect of
LSV on RGC survival will be tested with prolonged retinal explants. The morphology and
functional assay of RGCs will be tested after prolonged culture or exposure to stimulation. This
work is innovative, as it is the first epiretinal implantable device with standalone capability and
capacity to regulate the light. The work is highly significant because it will define GNES and
LSV as a new tool to address the clinical challenge in treating patients with photoreceptor loss,
leading to development of new ways to restore vision.
项目摘要
视网膜退化性和营养不良的病理是通过
寿命。因此,迫切需要找到可以解决这个问题的新型治疗设备
广泛的毁灭性疾病。金纳米颗粒神经感觉启动刺激剂
(GNES)就是这样一种设备,一种没有外部发电的植入物来刺激
剩余的视网膜神经节细胞以恢复视力。金纳米颗粒放在介电层上
具有在暴露于某些波长时产生电压的效力。有趣的是,这些
可以利用现象将其用作光感受器。长期目标是解决
需要生物相容性的神经感觉设备,修改了高分辨率和
视网膜营养不良和退化患者的持久GNE。拟议的研究
将评估可以被动地混合光学信号效果的自主GNE和
直接激发剩余的视网膜神经节细胞。这项研究的理由是黄金
纳米颗粒是产生颗粒的电压,无需图像处理,功率
眼内和眼外成分的源或广泛的手术。目的
应用是将GNES修饰为视网膜神经节细胞刺激剂。总体假设是
介电平台上的金纳米颗粒可以用作独立的神经刺激器
激发RGC,具有持久的兴奋能力生物相容性。假设将是
通过两个特定目的测试:1。使用GNES设备评估RGC的激发。
GNES激发将使用两种方法进行评估。首先使用多电极阵列(MEA)与
人类干细胞诱导GNE的RGC生长。此外,我们将在基因上使用
编码的钙指示剂(GECI)小鼠与缺乏感光体的RD1小鼠交叉。我们
将测试GNES对不同波长和空间分辨率的响应。 2。确定
带有轻便快门阀(LSV)的精制GNE的可行性。电气中的关注点之一
刺激使系统过热或恒定刺激的神经毒性作用。效果
RGC生存的LSV将通过长时间的视网膜外植体测试。形态和
长期培养或暴露于刺激后,将测试RGC的功能测定。这
工作是创新的,因为它是第一个具有独立能力和
调节光的能力。这项工作非常重要,因为它将定义GNE和
LSV是解决临床挑战的新工具,以治疗感光者丧失的患者,
导致发展新方法来恢复视力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amir Reza Hajrasouliha其他文献
Contribution of endogenous opioids and nitric oxide to papillary muscle contractile impairment in cholestatic rats
- DOI:
10.1016/j.ejphar.2005.08.057 - 发表时间:
2005-10-31 - 期刊:
- 影响因子:
- 作者:
Farzad Ebrahimi;Sina Tavakoli;Amir Reza Hajrasouliha;Hamed Shafaroodi;Hamed Sadeghipour;Kiarash Riazi;Amir Ali Borhani;Golbahar Houshmand;Seyed Hossein Ahmadi;Ahmad Reza Dehpour - 通讯作者:
Ahmad Reza Dehpour
Amir Reza Hajrasouliha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amir Reza Hajrasouliha', 18)}}的其他基金
Gold nanoparticle Neurosensory Epiretinal Implant to Treat Photoreceptor Vision Loss
金纳米颗粒神经感觉视网膜前植入物治疗感光器视力丧失
- 批准号:
10675766 - 财政年份:2022
- 资助金额:
$ 23.78万 - 项目类别:
相似国自然基金
基于“肝—眼轴”的枸杞子及其复方防治青少年近视与年龄相关性黄斑变性的功效物质与生物学机制研究
- 批准号:U21A20408
- 批准年份:2021
- 资助金额:260.00 万元
- 项目类别:
基于“肝-眼轴”的枸杞子及其复方防治青少年近视与年龄相关性黄斑变性的功效物质与生物学机制研究
- 批准号:
- 批准年份:2021
- 资助金额:260 万元
- 项目类别:
PGF突变介导的周细胞与内皮细胞crosstalk在湿性年龄相关性黄斑变性中的作用及机制研究
- 批准号:82000898
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
组织病理结构与临床检查对照观察在指导渗出性年龄相关性黄斑变性诊治中的意义研究
- 批准号:81400409
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于多模态医学影像技术的湿性年龄相关性黄斑变性诊断与分析
- 批准号:81371629
- 批准年份:2013
- 资助金额:75.0 万元
- 项目类别:面上项目
相似海外基金
Novel Polymer-antibody Conjugates as Long-acting Therapeutics for Ocular Diseases
新型聚合物-抗体缀合物作为眼部疾病的长效治疗药物
- 批准号:
10760186 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Deciphering the role of mitochondrial/autophagy dysfunction in regulating inflammatory processes during AMD pathogenesis
破译线粒体/自噬功能障碍在 AMD 发病机制中调节炎症过程中的作用
- 批准号:
10664118 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Nanoparticle-Based Tracking of Retinal Ganglion Cell Transplant
基于纳米颗粒的视网膜神经节细胞移植追踪
- 批准号:
10663516 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别: