Automated cell-type-specific electrophysiology for understanding circuit dysregulation in Alzheimer's Disease
自动化细胞类型特异性电生理学用于了解阿尔茨海默氏病的电路失调
基本信息
- 批准号:10525870
- 负责人:
- 金额:$ 226.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-17 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAcuteAddressAffectAgeAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease diagnosisAlzheimer&aposs disease modelAlzheimer&aposs disease patientAmyloid ProteinsAnimal ModelAreaBiochemical MarkersBiological MarkersBrainBrain regionCell TherapyCellsClinical ResearchCognitionData SetDementiaDepositionDetectionDevelopmentDiagnostic testsDiseaseElectrophysiology (science)EngineeringEpilepsyEvolutionFluorescenceFunctional disorderFutureGoalsHippocampus (Brain)HumanImpaired cognitionIndividualInterneuronsLabelLeadLearningMemoryMemory LossMethodsModelingMolecularMusNeocortexNerve DegenerationNeurobiologyNeurofibrillary TanglesNeuronsNeurosciencesOpticsParvalbuminsPathologicPathologyPersonsPhysiologicalPhysiologyPropertyResearch PersonnelResolutionRoboticsScienceSenile PlaquesSliceSorbusSymptomsTechnologyTherapeuticTimeWorkbasecell typecommercializationeffective therapyentorhinal cortexexcitatory neuronfamilial Alzheimer diseasefluorescence imagingforestin vivomachine visionmild cognitive impairmentmouse modelneuronal circuitryneurotransmissionnoveloperationoptogeneticspatch clamppre-clinicalpreventprogressive neurodegenerationrobotic systemsuccesstau Proteinstheoriestooltool development
项目摘要
Project Summary
Over 150 million people are projected to be living with dementia worldwide by 2050. Alzheimer’s disease (AD)
is the most common form of dementia, responsible for ~70% of dementia cases. A hallmark pathological feature
of Alzheimer’s disease (AD) is progressive neurodegeneration, which is thought to initiate and track progressive
cognitive decline in AD patients. While increasingly sensitive biochemical markers are available to diagnose AD
in individuals, treatments to stall the disease in its early stages remain elusive. Increasing evidence in AD patients
models indicates that significant accumulation of these biomarkers may be preceded by early circuit dysfunction.
A large plurality of AD patients display subclinical epilepsy. Furthermore, circuit hyperexcitability has been
observed before plaque formation in several familial AD mouse models as well, with similar findings in mouse
models of sporadic AD. Cellular evidence from these studies suggests that circuit dysregulation is due to altered
circuit inhibition from GABAergic interneurons. In particular, parvalbumin-expressing (PV) interneurons appear
to be prone to changes in their action potential (AP) firing, and potentially neurotransmission, across distinct
familial and sporadic AD mouse models. Neurodegeneration in AD is often thought to progress through well-
defined brain regions, and interestingly, hyperexcitable circuits may accelerate this pathology. Whether
physiological changes to PV interneurons emerge first in regions of high vulnerability in AD is unclear. Our central
hypothesis is that PV interneurons will develop dysfunctional physiological deficits first in vulnerable brain regions
during early AD, which may then progress to other brain areas in a Braak-esque fashion. To evaluate this
hypothesis, which will require electrophysiological recordings from thousands of individual neurons, we will use
the PatcherBot, our robotic platform capable of performing high-throughput, automated electrophysiology of
neurons in brain slices; however, in this work, we will augment the PatcherBot’s machine vision capabilities with
fluorescence imaging to specifically target PV-expressing interneurons in brain slices. The rationale and
feasibility of this proposal are shown in preliminary work, demonstrating (1) fully automated patch clamping of
florescent-targeted interneurons using the PatcherBot, (2) brain-wide introduction of PV specific labeling and
optogenetic methods in AD mice in vivo, and (3) early-stage PV firing and neurotransmission deficits in a
prodromal FAD mouse model. Here, we will address our hypothesis across three major regions (entorhinal
cortex, hippocampus, isocortex) in 3 distinct models (APOE4, hAPP-KI, 5xFAD) and 3 relevant developmental
timepoints. Findings from this proposal will yield wide-ranging advances, including high-throughput cell-type-
specific physiology, to information regarding the potential circuit-seeding of cognitive dysfunction in early AD.
项目概要
预计到 2050 年,全球将有超过 1.5 亿人患有痴呆症。 阿尔茨海默病 (AD)
是最常见的痴呆症,约占痴呆症病例的 70%。标志性病理特征
阿尔茨海默病 (AD) 的病因是进行性神经退行性变,人们认为它会启动并追踪进行性神经退行性变。
AD患者的认知能力下降。虽然越来越敏感的生化标记物可用于诊断 AD
对于个体来说,在疾病早期阶段阻止疾病的治疗方法仍然难以捉摸。越来越多的 AD 患者证据
模型表明,这些生物标志物的显着积累可能先于早期回路功能障碍。
大量 AD 患者表现出亚临床癫痫。此外,电路过度兴奋已
在几种家族性 AD 小鼠模型中,在斑块形成之前也观察到这一现象,在小鼠中也有类似的发现
散发性 AD 模型。这些研究的细胞证据表明,电路失调是由于改变
GABA能中间神经元的电路抑制。特别是,表达小清蛋白(PV)的中间神经元出现
不同的动作电位(AP)放电和潜在的神经传递容易发生变化
家族性和散发性 AD 小鼠模型。 AD 中的神经变性通常被认为是通过良好的进展
明确的大脑区域,有趣的是,过度兴奋的电路可能会加速这种病理学。无论
PV 中间神经元的生理变化首先出现在 AD 的高度脆弱区域尚不清楚。我们的中央
假设PV中间神经元首先会在脆弱的大脑区域产生功能失调的生理缺陷
在AD早期,它可能会以布拉克式的方式进展到其他大脑区域。为了评价这一点
假设,这需要数千个单个神经元的电生理记录,我们将使用
PatcherBot,我们的机器人平台,能够执行高通量、自动化的电生理学
大脑切片中的神经元;然而,在这项工作中,我们将通过以下方式增强 PatcherBot 的机器视觉功能:
荧光成像专门针对脑切片中表达 PV 的中间神经元。理由和
该提案的可行性在初步工作中得到了证明,证明了(1)全自动膜片钳
使用 PatcherBot 以荧光为目标的中间神经元,(2) 在全脑范围内引入 PV 特异性标记和
AD小鼠体内的光遗传学方法,以及(3)早期PV放电和神经传递缺陷
前驱期 FAD 小鼠模型。在这里,我们将在三个主要区域(内嗅区
皮层、海马体、同皮质)的 3 种不同模型(APOE4、hAPP-KI、5xFAD)和 3 种相关的发育模型
时间点。该提案的研究结果将产生广泛的进步,包括高通量细胞类型
具体的生理学,有关早期 AD 认知功能障碍的潜在电路播种的信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Craig Forest其他文献
Craig Forest的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Craig Forest', 18)}}的其他基金
In-vivo circuit activity measurement at single cell, sub-threshold resolution
单细胞体内电路活动测量,亚阈值分辨率
- 批准号:
8935946 - 财政年份:2014
- 资助金额:
$ 226.33万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 226.33万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 226.33万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 226.33万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 226.33万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 226.33万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 226.33万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 226.33万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 226.33万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 226.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 226.33万 - 项目类别:
Operating Grants














{{item.name}}会员




