Understanding mechanisms of transcriptional regulation by chromatin adaptor proteins
了解染色质接头蛋白的转录调控机制
基本信息
- 批准号:10533396
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Adaptor Signaling ProteinAffectAllelesAutoimmunityAwardBar CodesBindingBiochemicalBiochemistryBiologicalBiological AssayBiologyCell physiologyCellsChIP-seqChemicalsChromatinChromatin Remodeling FactorChromatin StructureClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesComplexDNADNA BindingDataDevelopmentDiseaseDistalEndocrineEnhancersEnvironmentEpigenetic ProcessEventFunctional disorderFutureGene ExpressionGene Expression ProfilingGenesGenetic TranscriptionGenomeGenomic approachGenomicsHistonesImpairmentIn SituIntellectual functioning disabilityIntercistronic RegionKnowledgeLabelLanguageLeadLibrariesMLL geneMalignant NeoplasmsMediatingMeninMentorsMethodsMethyltransferaseModificationMolecularMotivationMutationNucleosomesOncogenicOutputPhasePhenotypePhysiologicalPhysiologyPlayPositioning AttributePost-Translational Protein ProcessingProcessProteinsProteomicsReaderReadingRecurrenceRegulationRegulatory ElementResearchResourcesRoleScaffolding ProteinShapesSignal TransductionSiteSurfaceTestingTissuesTrainingTranscriptional RegulationWorkbasecareerchromatin proteinchromatin remodelingcombinatorialepigenomicsfunctional genomicsgenetic approachgenome-widegenomic locushistone methyltransferasehistone modificationhuman diseaseimprovedinnovationinsightinterestleukemiamutantnovelpleiotropismpromoterprotein complexprotein structurerecruitscaffoldstructural biologytranscription factortumor
项目摘要
PROJECT SUMMARY
Precise regulation of chromatin states is critical to many vital cellular processes, including differentiation and
proliferation. Chromatin misregulation has been associated with human diseases, such as cancer, intellectual
disabilities, and autoimmunity, among others. Understanding the mechanisms by which genomic access is
controlled at the level of chromatin is critical for revealing how cellular phenotypes are established and
maintained, and how these processes are altered in disease. This study focuses on elucidating the molecular
mechanisms by which the chromatin adaptor Menin coordinates protein complexes to transduce chromatin
signals into transcriptional outputs. This work will test the central hypothesis that context-specific functions of
Menin are dictated by its ability to bind distinct chromatin environments and recruit a variety of chromatin factors
in a highly regulated manner. During the mentored phase of the award, it will determine how Menin targets
specific genomic loci by integrating DNA-barcoded nucleosome libraries, epigenomics, and functional genomics
approaches. This multi-tiered approach will identify combinatorial histone modifications and transcription factors,
as well as delineate their biological relationships with Menin and how they contribute to its genomic localization
(Aim 1). It will also identify and comprehensively characterize chromatin proteins and complexes that mediate
regulatory functions of Menin at distinct cis-regulatory elements (Aim 2). During the independent phase of the
award, it will determine how recurrent MEN1 mutations affect Menin’s ability to target and shape the chromatin
landscape, as well as affect transcription (Aim 3). Furthermore, it will characterize the cellular and organismal
phenotypes elicited by endogenous expression of MEN1 mutant alleles. Successful completion of the proposed
studies will produce insights into how Menin regulates chromatin biology and transcription, and will provide a
greater understanding of the mechanisms by which disease-associated mutant Menin proteins promote disease.
Such knowledge could yield novel insights into the roles of chromatin and epigenetic regulators in normal
physiology and pathophysiology. The integrative approaches proposed here will serve as a valuable resource
for the wider scientific community interested in pursuing future studies of chromatin factors with presumed
adaptor/scaffolding functions that have not been studied previously due to limitations of current methods. They
will also serve as a platform for the PI to obtain new training in chromatin and chemical biology, biochemistry of
transcription, structural biology, and computational epigenomics. Such training will be critical for the development
of the PI’s career and will position her to effectively integrate these approaches for making novel and innovative
contributions to the field of chromatin biology.
项目摘要
染色质状态的精确调节对于许多重要的细胞过程至关重要,包括分化和
增殖。染色质的正调与人类疾病(例如癌症)有关
残疾和自身免疫等。了解基因组访问的机制
在染色质水平上控制对于揭示细胞表型的建立和
维持以及这些过程如何改变疾病。这项研究的重点是阐明分子
染色质衔接子Menin将蛋白质复合物与染色质转导的机制
信号转录输出。这项工作将检验中心假设,即上下文特定的功能
Menin取决于其结合不同染色质环境并募集各种染色质因子的能力所决定的
以高度监管的方式。在奖励的修订阶段,它将决定梅宁的目标
特定的基因组基因座通过整合DNA-barcoded核小体库,表观基因组学和功能基因组学
方法。这种多层方法将确定组合的Hisstone修改和转录因子,
以及描述他们与梅宁的生物学关系以及它们如何为基因组定位做出贡献
(目标1)。它还将识别并全面地表征介导的染色质蛋白和复合物
Menin在不同顺式调节元件上的调节功能(AIM 2)。在独立阶段
奖励,它将决定复发性MEN1突变如何影响Menin靶向和塑造染色质的能力
景观以及影响转录(AIM 3)。此外,它将表征细胞和有机
Men1突变等位基因的内源性表达引起的表型。成功完成拟议的
研究将对Menin如何调节染色质生物学和转录产生见解,并将提供
对与疾病相关的突变蛋白促进疾病的机制有更深入的了解。
这种知识可以产生对染色质和表观遗传调节剂在正常作用的作用的新见解
生理学和病理生理学。这里提出的综合方法将成为宝贵的资源
对于有兴趣通过推测的染色质因素的研究感兴趣的更广泛的科学界
由于当前方法的局限性,适配器/脚手架函数先前尚未研究。他们
还将作为PI获得染色质和化学生物学的新培训的平台
转录,结构生物学和计算表观基因组学。这样的培训对于发展至关重要
PI的职业生涯,将使她有效地整合这些方法以制造新颖和创新的方法
对染色质生物学领域的贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yadira M Soto-Feliciano其他文献
Yadira M Soto-Feliciano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yadira M Soto-Feliciano', 18)}}的其他基金
Understanding mechanisms of transcriptional regulation by chromatin adaptor proteins
了解染色质接头蛋白的转录调控机制
- 批准号:
10624930 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Targeting tumor-microenvironment interaction to overcome leukemia chemoresistance
靶向肿瘤-微环境相互作用以克服白血病化疗耐药性
- 批准号:
8783014 - 财政年份:2014
- 资助金额:
$ 24.9万 - 项目类别:
Targeting tumor-microenvironment interaction to overcome leukemia chemoresistance
靶向肿瘤-微环境相互作用以克服白血病化疗耐药性
- 批准号:
8921792 - 财政年份:2014
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:82200258
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:82171845
- 批准年份:2021
- 资助金额:54.00 万元
- 项目类别:面上项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
全基因组范围内揭示杂交肉兔等位基因特异性表达模式对杂种优势遗传基础的影响
- 批准号:32102530
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The role of SH2B3 in regulating CD8 T cells in Type 1 Diabetes
SH2B3 在 1 型糖尿病中调节 CD8 T 细胞的作用
- 批准号:
10574346 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Understanding mechanisms of transcriptional regulation by chromatin adaptor proteins
了解染色质接头蛋白的转录调控机制
- 批准号:
10624930 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Tspan14 expression and function in cardiovascular disease
Tspan14在心血管疾病中的表达和功能
- 批准号:
10851296 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Tspan14 expression and function in cardiovascular disease
Tspan14在心血管疾病中的表达和功能
- 批准号:
10656419 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Tspan14 expression and function in cardiovascular disease
Tspan14在心血管疾病中的表达和功能
- 批准号:
10427604 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别: