Inter-modal Coupling Image Analytics
模态间耦合图像分析
基本信息
- 批准号:10530041
- 负责人:
- 金额:$ 76.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-10 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressBiological MarkersBrainBrain imagingComplexCouplingData ScientistDevelopmentDiagnosticExecutive DysfunctionGene set enrichment analysisGenomicsGoalsHumanImageLeftMachine LearningMapsMeasurementMeasuresMental disordersMethodologyMethodsModalityMultimodal ImagingNon-linear ModelsPhiladelphiaPsychopathologyReproducibilityResearch PersonnelStatistical MethodsStructureWorkYouthcohortconnectomedata resourcehigh dimensionalityimaging modalityimaging studyinterestoutcome predictionsuccesstool
项目摘要
PROJECT SUMMARY
Almost all brain imaging studies now collect multiple imaging modalities, in an effort to derive measures of both
structure and function from diverse imaging sequences. While quantitative data scientists have focused on
machine learning approaches for predicting outcomes using multi-modal imaging, rigorous statistical methods
for examining the relationship between imaging modalities have lagged behind. At present, the lack of statistical
methodologies for assessing inter-modal coupling (IMCo) has left investigators with ad hoc solutions that lack
statistical power and are prone to type I error, posing a threat to scientific rigor and reproducibility. In this
application, we propose robust methods that leverage subject-specific measurements and use nonlinear
modeling to address complex relationships in brain maps or networks, while accounting for important covariates
(Aim 1). Furthermore, we will develop powerful approaches for assessing whether effects of interest (e.g.,
psychopathology, development) are enriched within brain networks (Aim 2). Assessment of this coupling
between statistical associations and brain networks will capitalize upon tools from statistical genomics (e.g.,
gene set enrichment analysis) to provide principled methods for conducting enrichment analyses using high-
dimensional, personalized brain networks. Finally, we will use these tools to delineate how trans-diagnostic
executive dysfunction in youth with mental illness is related to abnormalities in structure-function coupling within
brain networks (Aim 3). To do this, we will leverage three massive data resources: the Philadelphia
Neurodevelopmental Cohort (PNC; n=1,601), the Healthy Brain Network (n=3,200), and the Human
Connectome-Development (HCP-D; n=1,300) study Taken together, the proposed work builds upon the notable
success in the first project period, promising to yield rigorous and generalizable methods for delineating the
relationships between complementary measures of brain structure and function.
项目摘要
现在几乎所有的脑成像研究都收集多种成像方式,以获得两者的测量结果。
从不同的成像序列的结构和功能。虽然定量数据科学家专注于
使用多模态成像和严格统计方法预测结果的机器学习方法
检查成像方式之间的关系已经落后。目前,缺乏统计
评估模式间耦合(IMCo)的方法留给研究人员的是缺乏特定解决方案的解决方案,
统计能力,容易出现第一类错误,对科学的严谨性和可重复性构成威胁。在这
应用,我们提出了强大的方法,利用特定于主题的测量和使用非线性
建模以解决大脑地图或网络中的复杂关系,同时考虑重要的协变量
(Aim 1)。此外,我们将开发强大的方法来评估利益的影响(例如,
精神病理学、发展)在大脑网络中得到丰富(目标2)。对这种耦合的评估
统计关联和大脑网络之间的联系将利用来自统计基因组学的工具(例如,
基因集富集分析),以提供使用高-
三维的个性化大脑网络最后,我们将使用这些工具来描述如何跨诊断
精神疾病青年的执行功能障碍与其内部结构-功能耦合异常有关。
大脑网络(目标3)。为此,我们将利用三大数据资源:
神经发育队列(PNC; n= 1,601),健康大脑网络(n= 3,200)和人类
连接体发育(HCP-D; n= 1,300)研究总的来说,拟议的工作建立在值得注意的
在第一个项目期间取得了成功,有希望产生严格和普遍的方法,
大脑结构和功能的互补测量之间的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Theodore Satterthwaite其他文献
Theodore Satterthwaite的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Theodore Satterthwaite', 18)}}的其他基金
Longitudinal multi-modal neuroimaging of irritability in youth
青少年烦躁的纵向多模态神经影像学
- 批准号:
9129728 - 财政年份:2015
- 资助金额:
$ 76.24万 - 项目类别:
Longitudinal multi-modal neuroimaging of irritability in youth
青少年烦躁的纵向多模态神经影像学
- 批准号:
8956455 - 财政年份:2015
- 资助金额:
$ 76.24万 - 项目类别:
Neuroimaging of Dimensional Reward Dysfunction in Adolescence
青春期维度奖赏功能障碍的神经影像学
- 批准号:
8505546 - 财政年份:2012
- 资助金额:
$ 76.24万 - 项目类别:
Neuroimaging of Dimensional Reward Dysfunction in Adolescence
青春期维度奖赏功能障碍的神经影像学
- 批准号:
8352367 - 财政年份:2012
- 资助金额:
$ 76.24万 - 项目类别:
Neuroimaging of Dimensional Reward Dysfunction in Adolescence
青春期维度奖赏功能障碍的神经影像学
- 批准号:
8656442 - 财政年份:2012
- 资助金额:
$ 76.24万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 76.24万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 76.24万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 76.24万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 76.24万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 76.24万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 76.24万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 76.24万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 76.24万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 76.24万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 76.24万 - 项目类别:
Research Grant