Structure and dynamics of exocytotic fusion pores

胞吐融合孔的结构和动力学

基本信息

  • 批准号:
    10531290
  • 负责人:
  • 金额:
    $ 15.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-12-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT During exocytosis, fusion pores form the first aqueous connection that allows escape of neurotransmitters and hormones from secretory vesicles. Although it is well established that SNARE complexes catalyze fusion, the structure and composition of fusion pores remain unknown. This is the central question in the field of membrane fusion, as the mechanism of fusion cannot be solved until the structure of the first key intermediate in this pathway, the fusion pore, has been elucidated. The main objective of this proposal is to gain new insights into fusion pore composition, structure, and dynamics, using both reconstitution and cell-based approaches. A major limitation in the biochemical study of fusion pores in cells concerns their low abundance and ephemeral nature. For example, in neuroendocrine cells, the duration of the initial open state of the fusion pore is of the order of msec; the pore then either closes (kiss-and-run exocytosis), or dilates to yield full fusion. To overcome this limitation, we have begun to study fusion pore structure, in vitro, by exploiting the rigid framework of nanodiscs. SNARE-bearing proteoliposomes dock and fuse with nanodiscs that harbor cognate SNAREs. Since nanodiscs are bounded by membrane scaffolding proteins, the pores cannot dilate, and hence can be studied biochemically. Using this system, we have begun to interrogate the properties of reconstituted fusion pores. Our preliminary data indicate that, contrary to the common view that fusion pores are purely lipidic, they are in fact hybrid structures, composed of both lipids and proteins. We will use a simulation approach to derive a new model for fusion pore structure, and conduct cryo-electron microscopy studies to visualize this structure. We will also use a variety of cargos of varying diameter, in conjunction with optical sensors that report their release during fusion, to determine the size of the pore, and to determine whether pore diameter is `plastic' and varies with the number of SNARE proteins. We will also probe for interactions between cargo and SNARE transmembrane domains by exploiting electrostatic interactions between them. The nanodisc system will be adapted to single molecule studies, to monitor pore opening and closing of individual pores in real-time, and to directly assess the impact of regulatory factors on pore stability. These in vitro experiments will be complimented by our ongoing direct measurements of fusion pores in chromaffin cells, using carbon fiber amperometry, by comparing the effects of SNARE mutations in these two systems. We will draw parallels between these systems so that we can arrive at unified, physiologically relevant models for pores. Finally, we will also design novel optical probes, based on pH sensitive dyes conjugated to quantum dots, to study fusion pores in cultured neurons. These latter studies will address the highly controversial topic of kiss-and-run exocytosis versus full fusion. Together, the work described here will provide unparalleled comparisons between in vitro and cell based observations, and will reveal new insights in the first crucial intermediate in the exocytotic pathway: the enigmatic fusion pore.
项目总结/摘要 在胞吐过程中,融合孔形成第一个水连接,允许神经递质逃逸 和分泌囊泡中的激素。尽管SNARE复合物催化融合是公认的, 熔合孔的结构和组成仍然未知。这是该领域的核心问题, 膜融合,作为融合的机制不能解决,直到第一个关键中间体的结构 在这条途径中,融合孔,已经被阐明。该提案的主要目的是获得新的 深入了解融合孔组成,结构和动力学,使用重建和基于细胞的 接近。细胞融合孔的生物化学研究的一个主要限制是其丰度低 短暂的自然例如,在神经内分泌细胞中,融合的初始开放状态的持续时间 孔的数量级为毫秒;然后孔或者关闭(吻-跑胞吐作用),或者扩张以产生完全融合。 为了克服这一局限性,我们已经开始研究融合孔结构,在体外,通过利用刚性 纳米盘的框架。带有SNARE的蛋白脂质体与含有同源物的纳米盘对接和融合 陷阱。由于纳米盘被膜支架蛋白所束缚,因此孔不能扩张, 可以进行生物化学研究。使用这个系统,我们已经开始询问重组蛋白的性质, 融合孔我们的初步数据表明,与融合孔纯粹是 尽管如此,它们实际上是混合结构,由脂质和蛋白质组成。我们将使用模拟 方法推导出融合孔结构的新模型,并进行低温电子显微镜研究, 想象一下这个结构。我们还将使用各种不同直径的货物, 传感器报告它们在融合过程中的释放,以确定孔的大小,并确定是否 孔径是“可塑的”,并且随着SNARE蛋白的数量而变化。我们还将探索 货物和SNARE跨膜结构域之间的静电相互作用。 纳米圆盘系统将适用于单分子研究,以监测细胞的孔隙打开和关闭。 实时测量单个孔隙,并直接评估调节因素对孔隙稳定性的影响。这些在 我们正在进行的嗜铬细胞融合孔的直接测量将补充体外实验, 使用碳纤维安培法,通过比较SNARE突变在这两个系统中的影响。我们将 在这些系统之间进行比较,以便我们能够得出统一的生理相关模型, 毛孔最后,我们还将设计新型的光学探针,基于pH敏感染料与量子 点,以研究培养的神经元中的融合孔。这些后面的研究将解决高度争议的话题 和完全融合的区别总之,这里描述的工作将提供无与伦比的 体外和基于细胞的观察之间的比较,并将揭示新的见解,在第一个关键 胞吐途径的中间体:神秘的融合孔。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edwin R Chapman其他文献

Edwin R Chapman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edwin R Chapman', 18)}}的其他基金

Structure and dynamics of exocytotic fusion pores
胞吐融合孔的结构和动力学
  • 批准号:
    10534252
  • 财政年份:
    2016
  • 资助金额:
    $ 15.3万
  • 项目类别:
Structure and dynamics of exocytotic fusion pores
胞吐融合孔的结构和动力学
  • 批准号:
    10058280
  • 财政年份:
    2016
  • 资助金额:
    $ 15.3万
  • 项目类别:
Structure and dynamics of exocytotic fusion pores
胞吐融合孔的结构和动力学
  • 批准号:
    10307084
  • 财政年份:
    2016
  • 资助金额:
    $ 15.3万
  • 项目类别:
Distal effects of botulinum neurotoxins
肉毒杆菌神经毒素的远端效应
  • 批准号:
    8724569
  • 财政年份:
    2013
  • 资助金额:
    $ 15.3万
  • 项目类别:
Distal effects of botulinum neurotoxins
肉毒杆菌神经毒素的远端效应
  • 批准号:
    8582046
  • 财政年份:
    2013
  • 资助金额:
    $ 15.3万
  • 项目类别:
Localization, Interactions, And Functions of Synaptotagmins in the Pituitary
突触结合蛋白在垂体中的定位、相互作用和功能
  • 批准号:
    8259771
  • 财政年份:
    2011
  • 资助金额:
    $ 15.3万
  • 项目类别:
Localization, Interactions, And Functions of Synaptotagmins in the Pituitary
突触结合蛋白在垂体中的定位、相互作用和功能
  • 批准号:
    8449203
  • 财政年份:
    2011
  • 资助金额:
    $ 15.3万
  • 项目类别:
Localization, Interactions, And Functions of Synaptotagmins in the Pituitary
突触结合蛋白在垂体中的定位、相互作用和功能
  • 批准号:
    8458648
  • 财政年份:
    2011
  • 资助金额:
    $ 15.3万
  • 项目类别:
Localization, Interactions, And Functions of Synaptotagmins in the Pituitary
突触结合蛋白在垂体中的定位、相互作用和功能
  • 批准号:
    8664450
  • 财政年份:
    2011
  • 资助金额:
    $ 15.3万
  • 项目类别:
Localization, Interactions, And Functions of Synaptotagmins in the Pituitary
突触结合蛋白在垂体中的定位、相互作用和功能
  • 批准号:
    8185499
  • 财政年份:
    2011
  • 资助金额:
    $ 15.3万
  • 项目类别:

相似海外基金

CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
  • 批准号:
    479334
  • 财政年份:
    2023
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
  • 批准号:
    23H02481
  • 财政年份:
    2023
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
  • 批准号:
    2320160
  • 财政年份:
    2023
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
  • 批准号:
    10637251
  • 财政年份:
    2023
  • 资助金额:
    $ 15.3万
  • 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
  • 批准号:
    10604822
  • 财政年份:
    2023
  • 资助金额:
    $ 15.3万
  • 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
  • 批准号:
    10716621
  • 财政年份:
    2023
  • 资助金额:
    $ 15.3万
  • 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
  • 批准号:
    10655891
  • 财政年份:
    2023
  • 资助金额:
    $ 15.3万
  • 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
  • 批准号:
    10621634
  • 财政年份:
    2023
  • 资助金额:
    $ 15.3万
  • 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
  • 批准号:
    2334134
  • 财政年份:
    2023
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了