Structure and dynamics of exocytotic fusion pores
胞吐融合孔的结构和动力学
基本信息
- 批准号:10534252
- 负责人:
- 金额:$ 67.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:BindingBiochemicalCellsChromaffin CellsComplexCryoelectron MicroscopyDataDiameterDiseaseDockingDyesElectrostaticsEndocrineExocytosisHormonesHybridsIn VitroIndividualLipidsMeasurementMembraneMembrane FusionModelingMonitorMutationNatureNeuroendocrine CellNeurologicNeuronsNeurotransmittersOpticsPathway interactionsPhysiologicalPlayPropertyProteinsPsyche structureQuantum DotsReportingResearchRunningSNAP receptorScaffolding ProteinSecretory VesiclesStructureSystemTimeTransmembrane DomainVisualizationWorkaqueouscarbon fiberdesignexperimental studyinsightmillisecondnanodiskneurotransmitter releasenoveloptical sensorproteoliposomesreconstitutionsimulationsingle molecule
项目摘要
PROJECT SUMMARY/ABSTRACT
During exocytosis, fusion pores form the first aqueous connection that allows escape of neurotransmitters
and hormones from secretory vesicles. Although it is well established that SNARE complexes catalyze fusion,
the structure and composition of fusion pores remain unknown. This is the central question in the field of
membrane fusion, as the mechanism of fusion cannot be solved until the structure of the first key intermediate
in this pathway, the fusion pore, has been elucidated. The main objective of this proposal is to gain new
insights into fusion pore composition, structure, and dynamics, using both reconstitution and cell-based
approaches. A major limitation in the biochemical study of fusion pores in cells concerns their low abundance
and ephemeral nature. For example, in neuroendocrine cells, the duration of the initial open state of the fusion
pore is of the order of msec; the pore then either closes (kiss-and-run exocytosis), or dilates to yield full fusion.
To overcome this limitation, we have begun to study fusion pore structure, in vitro, by exploiting the rigid
framework of nanodiscs. SNARE-bearing proteoliposomes dock and fuse with nanodiscs that harbor cognate
SNAREs. Since nanodiscs are bounded by membrane scaffolding proteins, the pores cannot dilate, and hence
can be studied biochemically. Using this system, we have begun to interrogate the properties of reconstituted
fusion pores. Our preliminary data indicate that, contrary to the common view that fusion pores are purely
lipidic, they are in fact hybrid structures, composed of both lipids and proteins. We will use a simulation
approach to derive a new model for fusion pore structure, and conduct cryo-electron microscopy studies to
visualize this structure. We will also use a variety of cargos of varying diameter, in conjunction with optical
sensors that report their release during fusion, to determine the size of the pore, and to determine whether
pore diameter is `plastic' and varies with the number of SNARE proteins. We will also probe for interactions
between cargo and SNARE transmembrane domains by exploiting electrostatic interactions between them.
The nanodisc system will be adapted to single molecule studies, to monitor pore opening and closing of
individual pores in real-time, and to directly assess the impact of regulatory factors on pore stability. These in
vitro experiments will be complimented by our ongoing direct measurements of fusion pores in chromaffin cells,
using carbon fiber amperometry, by comparing the effects of SNARE mutations in these two systems. We will
draw parallels between these systems so that we can arrive at unified, physiologically relevant models for
pores. Finally, we will also design novel optical probes, based on pH sensitive dyes conjugated to quantum
dots, to study fusion pores in cultured neurons. These latter studies will address the highly controversial topic
of kiss-and-run exocytosis versus full fusion. Together, the work described here will provide unparalleled
comparisons between in vitro and cell based observations, and will reveal new insights in the first crucial
intermediate in the exocytotic pathway: the enigmatic fusion pore.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edwin R Chapman其他文献
Edwin R Chapman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edwin R Chapman', 18)}}的其他基金
Structure and dynamics of exocytotic fusion pores
胞吐融合孔的结构和动力学
- 批准号:
10531290 - 财政年份:2016
- 资助金额:
$ 67.58万 - 项目类别:
Structure and dynamics of exocytotic fusion pores
胞吐融合孔的结构和动力学
- 批准号:
10058280 - 财政年份:2016
- 资助金额:
$ 67.58万 - 项目类别:
Structure and dynamics of exocytotic fusion pores
胞吐融合孔的结构和动力学
- 批准号:
10307084 - 财政年份:2016
- 资助金额:
$ 67.58万 - 项目类别:
Localization, Interactions, And Functions of Synaptotagmins in the Pituitary
突触结合蛋白在垂体中的定位、相互作用和功能
- 批准号:
8259771 - 财政年份:2011
- 资助金额:
$ 67.58万 - 项目类别:
Localization, Interactions, And Functions of Synaptotagmins in the Pituitary
突触结合蛋白在垂体中的定位、相互作用和功能
- 批准号:
8449203 - 财政年份:2011
- 资助金额:
$ 67.58万 - 项目类别:
Localization, Interactions, And Functions of Synaptotagmins in the Pituitary
突触结合蛋白在垂体中的定位、相互作用和功能
- 批准号:
8458648 - 财政年份:2011
- 资助金额:
$ 67.58万 - 项目类别:
Localization, Interactions, And Functions of Synaptotagmins in the Pituitary
突触结合蛋白在垂体中的定位、相互作用和功能
- 批准号:
8664450 - 财政年份:2011
- 资助金额:
$ 67.58万 - 项目类别:
Localization, Interactions, And Functions of Synaptotagmins in the Pituitary
突触结合蛋白在垂体中的定位、相互作用和功能
- 批准号:
8185499 - 财政年份:2011
- 资助金额:
$ 67.58万 - 项目类别:
相似海外基金
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
- 批准号:
RGPIN-2019-06443 - 财政年份:2022
- 资助金额:
$ 67.58万 - 项目类别:
Discovery Grants Program - Individual
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
- 批准号:
RGPIN-2019-06443 - 财政年份:2021
- 资助金额:
$ 67.58万 - 项目类别:
Discovery Grants Program - Individual
Signalling to the Code: Understanding the biochemical regulation of DNA methylation in stem cells
编码信号:了解干细胞中 DNA 甲基化的生化调控
- 批准号:
2486497 - 财政年份:2020
- 资助金额:
$ 67.58万 - 项目类别:
Studentship
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
- 批准号:
RGPIN-2019-06443 - 财政年份:2020
- 资助金额:
$ 67.58万 - 项目类别:
Discovery Grants Program - Individual
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
- 批准号:
DGECR-2019-00215 - 财政年份:2019
- 资助金额:
$ 67.58万 - 项目类别:
Discovery Launch Supplement
A Novel Class of Enzyme Sensors to Elucidate the Biochemical Responses of Human Nasal Epithelial Cells to Heavy Metals
一类新型酶传感器可阐明人鼻上皮细胞对重金属的生化反应
- 批准号:
10172971 - 财政年份:2019
- 资助金额:
$ 67.58万 - 项目类别:
Investigating the Biophysical and Biochemical Influences of Stromal Cells on Anti-Cancer Drug Resistance within Bioengineered Tumor Microenvironment Models
在生物工程肿瘤微环境模型中研究基质细胞对抗癌药物耐药性的生物物理和生化影响
- 批准号:
1914680 - 财政年份:2019
- 资助金额:
$ 67.58万 - 项目类别:
Standard Grant
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
- 批准号:
RGPIN-2019-06443 - 财政年份:2019
- 资助金额:
$ 67.58万 - 项目类别:
Discovery Grants Program - Individual
A Novel Class of Enzyme Sensors to Elucidate the Biochemical Responses of Human Nasal Epithelial Cells to Heavy Metals
一类新型酶传感器可阐明人鼻上皮细胞对重金属的生化反应
- 批准号:
9755727 - 财政年份:2019
- 资助金额:
$ 67.58万 - 项目类别:
Platform for light-inducible, biochemical labeling of ribosomes in living single cells for the novel single-cell analytics based on seamlessly connected live cell imaging and transcriptomics
用于活单细胞中核糖体光诱导生化标记的平台,用于基于无缝连接的活细胞成像和转录组学的新型单细胞分析
- 批准号:
18K19313 - 财政年份:2018
- 资助金额:
$ 67.58万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)