Reinforcement learning and action sequencing in subcortical and cortical circuits
皮层下和皮层回路中的强化学习和动作排序
基本信息
- 批准号:10534118
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimalsArchitectureAreaBasal GangliaBehaviorBehavior monitoringBehavioralBrainBrain regionCodeCognitiveCollaborationsComplementComplexComputer ModelsCorpus striatum structureDataDecision MakingDimensionsDopamineForelimbFutureGoalsKnowledgeLearningLimb structureLiteratureMachine LearningMathematicsModelingModernizationMonkeysMotorMotor CortexMovementMusNeural Network SimulationNeuronsNeurosciencesOutputPathway interactionsPatternPerformancePlayPopulationPsychological reinforcementPublishingResearchRewardsRoleShapesSignal TransductionSiteStimulusStructureSynapsesSynaptic plasticityTechniquesTestingTheoretical modelTimeTrainingWorkbrain machine interfaceexperienceexperimental studyfield studylimb movementmathematical modelmotor behaviormotor learningneuralneural circuitneural modelneural networkprogramsrecurrent neural networksupervised learningtheories
项目摘要
Behaviors such as action selection and action sequencing require the shaping of dynamical neural activity patterns
through learning. Understanding how such learning occurs is challenging due to the involvement of multiple
brain areas and due to the fact that such behaviors involve multiple timescales, from the granular level of
moment-to-moment limb control to the cognitive level of goal-driven planning. Modern experiments, which are
able to record from large numbers of neurons in behaving animals, and in some cases to do so simultaneously
in multiple brain areas and throughout the learning of a task, are providing a path forward for addressing these
challenges. The overall goal of my research is to facilitate the synthesis and understanding of data from such
experiments by constructing models of the brain circuits relevant for a given behavior, addressing how the
neural activity in these circuits relates to behavior and how it is shaped over time through learning.
In recent work, I have developed expertise in learned dynamics in neural circuits through three related lines of
research. First, I have modeled the neural computations underlying timing-related behavior and its implementation
in the basal ganglia. Second, I have mathematically derived biologically plausible learning rules to underlie
supervised learning of time-dependent tasks in recurrent neural networks. Finally, I have worked on a theory-experiment
collaboration in which modeling with recurrent neural networks was used in tandem with brain-machine
interface experiments in monkeys to address the structure of neural representations within primary motor
cortex. In future work, I will build on this experience to address how dynamical neural activity patterns are
learned in order to produce complex behaviors over both short and long timescales.
One way to begin addressing this question is with the theory of reinforcement learning, which provides a rich
and powerful framework for addressing how actions should be performed in order to maximize future rewards.
Given their established role in implementing reinforcement learning, the basal ganglia form the starting point
for my proposed research program. I first aim to revise the classical model of basal ganglia function by constructing
and mathematically analyzing models that solve computationally challenging tasks and by comparing
the results with new data from my experimental collaborators (Aim 1). Building on this work, and making use of
my prior experience training recurrent neural networks to model motor tasks, I will next consider learning in
motor cortex and how it complements learning in basal ganglia (Aim 2), again comparing models with new experimental
data. Finally, I will construct models of the thalamocortico-basal ganglia circuit by incorporating
knowledge about the neural representations throughout this circuit and by leveraging recent advances in machine
learning. In this way I will address how the mammalian brain implements hierarchical reinforcement
learning to integrate behaviors over short and long timescales (Aim 3). Taken together, this research will advance
understanding of how neural activity facilitates action selection and sequencing in complex behaviors.
动作选择和动作排序等行为需要动态神经活动模式的形成
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distinguishing Learning Rules with Brain Machine Interfaces
用脑机接口区分学习规则
- DOI:10.48550/arxiv.2206.13448
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Jacob P. Portes;Christian Schmid;James M. Murray
- 通讯作者:James M. Murray
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Murray其他文献
James Murray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Murray', 18)}}的其他基金
Reinforcement learning and action sequencing in subcortical and cortical circuits
皮层下和皮层回路中的强化学习和动作排序
- 批准号:
10296960 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
Reinforcement learning and action sequencing in subcortical and cortical circuits
皮层下和皮层回路中的强化学习和动作排序
- 批准号:
10308730 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists