Deciphering Mechanisms of Limb Malformations Caused by Noncoding Variants In Vivo
体内非编码变异引起肢体畸形的破译机制
基本信息
- 批准号:10538362
- 负责人:
- 金额:$ 4.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAnteriorArchitectureBindingBiological AssayBiological ModelsBirthCell Culture TechniquesCellsChromatinChromatin LoopChromatin StructureCompetenceCongenital AbnormalityDNADNA SequenceDataDefectDetectionDiseaseEctopic ExpressionEnhancersGene ExpressionGenesGeneticGenetic TranscriptionGenomicsGoalsHigher Order Chromatin StructureIn VitroKnock-in MouseLeadLimb BudLimb DevelopmentLimb structureLinkLive BirthMapsMediatingMicroscopyModelingMusMutationNucleic Acid Regulatory SequencesOrganoidsPathogenesisPathogenicityPatientsPhenotypePredisposing FactorPredispositionReporterReportingReproducibilityResolutionRoleSHH geneSystemTechnologyTestingTissuesTransgenic MiceUntranslated RNAVariantbasecell typeclinical predictorsclinically significantcohesindevelopmental diseasedisease phenotypeepigenomicsgain of functionhuman diseasein vivoinsightmalformationmultiple omicsnovelpromoterrare varianttranscription factor
项目摘要
PROJECT SUMMARY/ABSTRACT
Limb malformations are the second most common congenital abnormality, occurring in 1 in every 500
live births. Mounting evidence implicates rare noncoding mutations to underlie non-syndromic (isolated) limb
malformations. Many of these variants map to transcriptional enhancers, regions of regulatory DNA that tune
gene expression. However, a fundamental gap remains in our understanding of the mechanisms by which these
variants alter enhancer activity and their role in causing limb defects. The most frequently affected noncoding
loci is the limb-specific enhancer of Sonic hedgehog (Shh). With over 30 independent rare variants linked to limb
malformations, the Shh limb enhancer is particularly susceptible to so-called Gain-Of-Function (GOF) variants.
GOF variants cause enhancer overactivity that leads to ectopic expression of their target genes. However, why
GOF variants only cause ectopic gene expression in specific cell types and why only a small subset of
enhancers are susceptible to GOF variants are both unknown.
GOF variants are among the least understood enhancer mutations that cause human disease. Much of
our lack of understanding of how GOF variants contribute to disease is owed to a lack of suitable model systems.
In vitro cell culture and organoid-based systems fail to recapitulate ectopic expression from GOF variants nor
model their phenotypic consequences. Thus, it is essential to use in vivo systems to determine the functional
and clinical significance of GOF variants. To address this major need, our group recently developed a novel
mouse enhancer reporter assay that enables highly-reproducible detection of ectopic gene expression in the
cells of the anterior limb domain where Shh is normally not expressed. The overall goal of this proposal is to
determine the genetic factors mediating the unique susceptibility of anterior limb bud cells and the Shh limb
enhancer to GOF variants.
I will test the hypothesis that susceptibility to GOF variants is dictated by the regulatory landscape of
anterior limb bud cells and a unique, stable higher-order chromatin structure of the Shh locus. To identify the
genetic factors that mediate ectopic Shh expression, I will characterize the regulatory landscapes and local
chromatin architecture of anterior limb bud cells in which Shh is ectopically active at single-cell resolution. To
determine genetic factors that predispose specific enhancers to pathogenesis, I will test the requirement of
higher-order chromatin structure for limb malformations resulting from GOF variants. By identifying targetable
genetic factors mediating ectopic gene expression, these studies will provide mechanistic insights into how GOF
variants in the limb-specific Shh enhancer contribute to limb malformations. Findings resulting from this proposal
can also be applied to predict the clinical significance of noncoding variants from patient sequencing data and
will have implications for other developmental disorders linked to GOF variants.
项目摘要/摘要
肢体畸形是第二常见的先天性畸形,每500人中有1人发生
活产越来越多的证据表明,罕见的非编码突变是非综合征(孤立)肢体的基础。
畸形这些变异中的许多都映射到转录增强子,即调节DNA的区域,
基因表达。然而,在我们对这些机制的理解方面,
变体改变增强子活性及其在引起肢体缺陷中的作用。最常受影响的非编码
基因座是Sonic hedgehog(Shh)的肢体特异性增强子。拥有超过30种与肢体相关的独立罕见变体
在畸形中,Shh肢体增强子特别容易受到所谓的功能获得(GOF)变体的影响。
GOF变体引起增强子过度活性,导致其靶基因的异位表达。可是为什么
GOF变异体只在特定细胞类型中引起异位基因表达,为什么只有一小部分GOF变异体在特定细胞类型中引起异位基因表达?
增强子对GOF变体的敏感性都是未知的。
GOF变异是引起人类疾病的增强子突变中最不为人所知的。大部分
我们对GOF变异体如何导致疾病缺乏理解是由于缺乏合适的模型系统。
体外细胞培养和基于类器官的系统不能重现GOF变体的异位表达,
模拟其表型后果。因此,必须使用体内系统来确定功能性的
以及GOF变异的临床意义。为了满足这一主要需求,我们的团队最近开发了一种新的
小鼠增强子报告基因测定,其能够高度可重复地检测在细胞中的异位基因表达,
Shh通常不表达的前肢区细胞。本提案的总体目标是
确定介导前肢芽细胞和Shh肢独特易感性的遗传因素
GOF变体的增强子。
我将检验这样一个假设,即GOF变异的易感性是由以下监管环境决定的:
前肢芽细胞和一个独特的,稳定的高阶染色质结构的Shh基因座。识别
介导异位Shh表达的遗传因素,我将描述调控景观和局部
前肢芽细胞的染色质结构,其中Shh在单细胞分辨率下具有异位活性。到
为了确定遗传因素,使特定的增强子易于发病,我将测试
GOF变异导致肢体畸形的高级染色质结构。通过识别目标
遗传因素介导异位基因表达,这些研究将提供机制的见解GOF如何
肢体特异性Shh增强子的变异导致肢体畸形。本提案得出的结论
也可用于从患者测序数据预测非编码变体的临床意义,
将对其他与GOF变异相关的发育障碍产生影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ethan W Hollingsworth其他文献
Ethan W Hollingsworth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 4.22万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 4.22万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 4.22万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 4.22万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 4.22万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 4.22万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 4.22万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 4.22万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 4.22万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 4.22万 - 项目类别:
Research Grant