A Scalable Method for Mapping Microconnectivity in Transcriptomically Distinct Neuron Types
一种可扩展的方法来绘制转录组上不同神经元类型的微连接
基本信息
- 批准号:10538015
- 负责人:
- 金额:$ 6.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAnatomyArchitectureAreaAxonBasal GangliaBehaviorBiological AssayBrainBrain regionCatalogsCell Differentiation processCellsCellular StructuresCerebellumClassificationCognitionComplexCoupledDataDevelopmentDistantFellowshipFluorescent in Situ HybridizationGene ExpressionGene Expression ProfileGene Expression ProfilingGenesGenetic IdentityImageIn SituIn Situ HybridizationIn VitroLearningLightLinkMapsMeasuresMethodologyMethodsMolecularMotorMotor CortexMovementNeuronsNeurosciencesOptical MethodsOpticsOutputPathway interactionsPatternPerceptionPhysiologyPopulationReportingRoleSpecificityStructureSynapsesSynaptic PotentialsSystemTechniquesTechnologyTestingThalamic structureTheoretical modelWorkanatomical tracingbrain cellcareercell typecomputational pipelinesexperienceexperimental studyimage registrationmotor behaviorneural circuitneurophysiologyneurotransmissionnext generation sequencingoptogeneticspresynapticprototyperelating to nervous systemsingle cell sequencingtooltranscriptomicsvoltage
项目摘要
Project Summary
Identifying the cell types that compose each brain region and the patterns of connectivity that link them is
key to understanding how neural circuits give rise to all perception, cognition, and behavior. Large-scale projects
enabled by next-generation sequencing technologies are revealing that the brain contains thousands of cell
types, each with unique molecular features, axonal targets, and roles in brain function. However, the synaptic
connections between these cell types is currently determined using low throughput methods in which connectivity
between pairs of cells is tested one-by-one. Data describing connectivity at the cellular level have become a
essential for theoretical models of brain function, and necessitate the development of larger scale and higher
throughput methods. In remarkable proof of concept experiments, genetically encoded voltage indicators
(GEVIs) have been employed to visualize activity and infer the connectivity of cells within the brain. I propose to
leverage this advance to develop SYNMAP, an efficient all-optical method for measuring connectivity between
the thousands of genetically defined cell types that make up the mammalian brain. In SYNMAP, neural activity
will be both controlled and observed with light. Gene expression will be visualized across the same cells with
highly multiplexed fluorescence in situ hybridization in situ. Using SYNMAP, synaptic connectivity can be
assayed across molecularly defined cell types with 100X higher throughout than currently possible, allowing us
to test important hypotheses about neural circuit architecture across systems neuroscience. I will apply SYNMAP
to determine whether parallel thalamocortical pathways relay information from the basal ganglia and cerebellum
to discrete subcircuits in the motor cortex, taking us one step further towards understanding how motor actions
are planned and executed by motor systems spanning multiple brain regions. Optical physiology is being quickly
adopted by neurophysiology labs, promising the widespread application of SYNMAP across neuroscience.
Successful development of SYNMAP will be transformative, allowing us to study the structure and dynamics of
any neural circuit and its component cell types.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Victoria Moya其他文献
Maria Victoria Moya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Victoria Moya', 18)}}的其他基金
A Scalable Method for Mapping Microconnectivity in Transcriptomically Distinct Neuron Types
一种可扩展的方法来绘制转录组上不同神经元类型的微连接
- 批准号:
10685266 - 财政年份:2022
- 资助金额:
$ 6.98万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 6.98万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 6.98万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Studentship