A Scalable Method for Mapping Microconnectivity in Transcriptomically Distinct Neuron Types
一种可扩展的方法来绘制转录组上不同神经元类型的微连接
基本信息
- 批准号:10685266
- 负责人:
- 金额:$ 7.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAnatomyArchitectureAreaAxonBasal GangliaBehaviorBiological AssayBrainBrain regionCatalogsCell Differentiation processCellsCellular StructuresCerebellumClassificationCognitionComplexCoupledDataDevelopmentDistantFellowshipFluorescent in Situ HybridizationGene ExpressionGene Expression ProfileGene Expression ProfilingGenesGenetic IdentityImageIn SituIn Situ HybridizationIn VitroLearningLightLinkMapsMeasuresMethodologyMethodsMolecularMotorMotor CortexMovementNeuronsNeurosciencesOptical MethodsOpticsOutputPathway interactionsPatternPerceptionPhysiologyPopulationReportingRoleSpecificityStructureSynapsesSynaptic PotentialsSystemTechniquesTechnologyTestingThalamic structureTheoretical modelVisualizationVisualization softwareWorkanatomical tracingbrain cellcareercell typecomputational pipelinesexperienceexperimental studyimage registrationmotor behaviorneuralneural circuitneurophysiologyneurotransmissionnext generation sequencingoptogeneticspresynapticprototypesingle cell sequencingskillstooltranscriptomicsvoltage
项目摘要
Project Summary
Identifying the cell types that compose each brain region and the patterns of connectivity that link them is
key to understanding how neural circuits give rise to all perception, cognition, and behavior. Large-scale projects
enabled by next-generation sequencing technologies are revealing that the brain contains thousands of cell
types, each with unique molecular features, axonal targets, and roles in brain function. However, the synaptic
connections between these cell types is currently determined using low throughput methods in which connectivity
between pairs of cells is tested one-by-one. Data describing connectivity at the cellular level have become a
essential for theoretical models of brain function, and necessitate the development of larger scale and higher
throughput methods. In remarkable proof of concept experiments, genetically encoded voltage indicators
(GEVIs) have been employed to visualize activity and infer the connectivity of cells within the brain. I propose to
leverage this advance to develop SYNMAP, an efficient all-optical method for measuring connectivity between
the thousands of genetically defined cell types that make up the mammalian brain. In SYNMAP, neural activity
will be both controlled and observed with light. Gene expression will be visualized across the same cells with
highly multiplexed fluorescence in situ hybridization in situ. Using SYNMAP, synaptic connectivity can be
assayed across molecularly defined cell types with 100X higher throughout than currently possible, allowing us
to test important hypotheses about neural circuit architecture across systems neuroscience. I will apply SYNMAP
to determine whether parallel thalamocortical pathways relay information from the basal ganglia and cerebellum
to discrete subcircuits in the motor cortex, taking us one step further towards understanding how motor actions
are planned and executed by motor systems spanning multiple brain regions. Optical physiology is being quickly
adopted by neurophysiology labs, promising the widespread application of SYNMAP across neuroscience.
Successful development of SYNMAP will be transformative, allowing us to study the structure and dynamics of
any neural circuit and its component cell types.
项目摘要
识别组成每个大脑区域的细胞类型以及连接它们的连接模式是
理解神经回路如何产生所有感知、认知和行为的关键。大型项目
下一代测序技术的发展揭示了大脑包含数千个细胞,
类型,每种类型都具有独特的分子特征,轴突靶点和在脑功能中的作用。然而,突触
这些小区类型之间的连接当前使用低吞吐量方法来确定
每对细胞之间的差异被逐一测试。描述蜂窝级别连接性的数据已经成为
这对于大脑功能的理论模型至关重要,并且需要开发更大规模和更高的
吞吐量方法。在引人注目的概念验证实验中,基因编码的电压指示器
(GEVI)已被用于可视化活动并推断大脑内细胞的连接性。我建议
利用这一进展开发SYNMAP,这是一种有效的全光学方法,用于测量
哺乳动物大脑中数以千计的基因细胞。在SYNMAP中,神经活动
将被控制和观察的光。基因表达将在相同的细胞中可视化,
高度多重荧光原位杂交。使用SYNMAP,突触连接可以被
在分子定义的细胞类型中进行检测,其通量比目前可能的高100倍,
来检验系统神经科学中关于神经回路结构的重要假设。我将应用SYNMAP
以确定是否有平行的丘脑皮层通路传递来自基底神经节和小脑的信息
运动皮层中的离散子回路,使我们更进一步了解运动是如何
是由跨越多个大脑区域的运动系统来计划和执行的。光学生理学正在迅速地
被神经生理学实验室采用,有望在神经科学中广泛应用SYNMAP。
SYNMAP的成功开发将是变革性的,使我们能够研究
任何神经回路及其组成细胞类型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Victoria Moya其他文献
Maria Victoria Moya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Victoria Moya', 18)}}的其他基金
A Scalable Method for Mapping Microconnectivity in Transcriptomically Distinct Neuron Types
一种可扩展的方法来绘制转录组上不同神经元类型的微连接
- 批准号:
10538015 - 财政年份:2022
- 资助金额:
$ 7.38万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 7.38万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 7.38万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 7.38万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 7.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 7.38万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 7.38万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 7.38万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 7.38万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 7.38万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 7.38万 - 项目类别:
Studentship