Mechanisms of YAP1-driven resistance to KRAS-G12C inhibition
YAP1 驱动的 KRAS-G12C 抑制抵抗机制
基本信息
- 批准号:10537668
- 负责人:
- 金额:$ 3.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-09-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAntineoplastic AgentsAppearanceBIRC5 geneBRAF geneBindingCancer EtiologyCarbonCell LineCellsCessation of lifeClinicalColorectalColorectal CancerConflict (Psychology)CytostaticsDNA Binding DomainDependenceDrug resistanceExhibitsFamilyFosteringFoundationsGene ExpressionGenesGeneticGenetic TranscriptionGlycolysisGoalsGrowthInstitutesKRAS2 geneLungMAP Kinase GeneMAP2K1 geneMEKsMalignant NeoplasmsMalignant neoplasm of lungMalignant neoplasm of pancreasMapsMediatingMetabolismMitochondriaMitogen-Activated Protein KinasesModelingMutationNutrientOncogenesOncogenicOncoproteinsPancreatic Ductal AdenocarcinomaPathway interactionsPatientsPharmacologyProcessPublishingRelapseReportingResearchResearch PersonnelResistanceRoleSignal TransductionTestingTherapeuticTranscription CoactivatorTranscriptional RegulationTumor Suppressor Proteinsaddictioncancer cellcancer therapycareer developmentclinical applicationclinical candidatecytotoxicdrug developmentdrug discoverygenetic signatureinhibitormutantoverexpressionpancreatic ductal adenocarcinoma cellresearch clinical testingresistance mechanismtargeted treatmenttherapeutic targettranscription factortreatment strategytumor
项目摘要
Mutationally activated KRAS comprises the major oncogenic driver in the top three causes of cancer deaths in
the US: lung (LAC), colorectal (CRC), and pancreatic ductal adenocarcinoma (PDAC). In 2021, a milestone in
anti-KRAS drug discovery was achieved, with the first clinically effective direct inhibitor of KRAS approved, for
the treatment of KRASG12C mutant lung cancer. However, as with essentially all targeted anti-cancer therapies,
both de novo resistance and treatment-associated acquired resistance have recently been reported. As
anticipated, mutations that reactivate RAS and RAS effector signaling through the RAF-MEK-ERK mitogen-
activated protein kinase signaling network (e.g., activating mutations in BRAF, MEK1) were identified in LAC and
CRC patients treated with KRASG12C selective inhibitors (G12Ci), and combinations that concurrently target these
resistance mechanisms are now under clinical evaluation. However, no genetic mechanisms were identified in
up to 50% of patients who relapsed on G12Ci treatment. To address possible ERK MAPK-independent
resistance mechanisms, my studies have identified and validated the downstream target of the Hippo tumor
suppressor pathway, the YAP1 transcriptional coactivator and oncoprotein, as a driver of resistance to G12Ci-
mediated growth suppression. Consistent with previous studies that established the ability of YAP1 activation to
overcome addiction to mutant KRAS, my preliminary analyses demonstrated that ectopic overexpression of wild-
type or activated YAP1 drives resistance to G12Ci treatment in KRASG12C mutant LAC, CRC and PDAC cell
lines. This finding establishes the rationale and foundation for my research goal: to determine the mechanistic
basis for YAP1-mediated resistance to G12Ci treatment. I hypothesize that identification of YAP1-driven
resistance mechanisms will establish combinations of pharmacologic inhibitors that can enhance the
long-term anti-tumor efficacy of G12Ci and other KRAS-targeted therapies. I have developed three aims to
address the mechanisms by which YAP1 drives resistance. First, I will determine the role of the TEAD
transcription factors in YAP1-driven KRAS-independence. These studies may validate the clinical application of
TEAD inhibitors for the treatment of KRAS-mutant PDAC and other cancers. Second, I will identify YAP1-
regulated genes that sustain KRAS-independent growth, in support of a model where YAP1 overcomes KRAS-
addiction by restoring expression of key KRAS-regulated genes. Finally, I will identify KRAS-regulated metabolic
processes that are both sustained by YAP1 activation and important for PDAC growth. Taken together, my
studies may validate an important driver of resistance to all KRAS-targeted therapies and define therapeutic
approaches to overcome YAP1-driven drug resistance. These studies will require my application of a diverse
spectrum of experimental approaches, advance my understanding of key steps in anti-cancer drug development,
and foster my career development as an independent cancer researcher.
突变激活的KRAS是导致中国癌症死亡的前三大致癌因素
美国:肺癌(LAC)、结直肠癌(CRC)和胰腺导管腺癌(PDAC)。2021年,这是
实现了抗KRAS药物的发现,批准了第一个临床有效的KRAS直接抑制剂,用于
KRASG12C突变肺癌的治疗然而,与基本上所有的靶向抗癌疗法一样,
新发耐药和治疗相关的获得性耐药最近都有报道。AS
预计,通过RAF-MEK-ERK丝裂原重新激活RAS和RAS效应器信号的突变-
激活的蛋白激酶信号网络(例如,BRAF、MEK1的激活突变)在LAC和
使用KRASG12C选择性抑制剂(G12Ci)和同时针对这些药物的联合治疗的结直肠癌患者
耐药机制目前正在进行临床评估。然而,没有发现任何遗传机制在
在接受G12Ci治疗的复发患者中,高达50%。以解决可能的ERK MAPK独立问题
耐药机制,我的研究已经确定并验证了河马肿瘤的下游靶点
抑制途径,YAP1转录辅助激活因子和癌蛋白,作为G12Ci抗性的驱动因素。
中介生长抑制。与先前建立了YAP1激活能力的研究一致
克服对突变KRAS的依赖,我的初步分析表明,野生型KRAS的异位过度表达-
YAP1类型或激活促进KRASG12C突变LAC、CRC和PDAC细胞对G12Ci治疗的耐药性
台词。这一发现为我的研究目标奠定了理论基础和基础:确定
YAP1介导的对G12Ci治疗的抗性基础。我假设由YAP1驱动的
耐药机制将建立药物抑制剂的组合,可以增强
G12Ci和其他KRAS靶向治疗的长期抗肿瘤疗效。我制定了三个目标来
阐述YAP1驱动阻力的机制。首先,我将确定Tead的角色
YAP1驱动的KRAS-独立性中的转录因子。这些研究可能会验证其临床应用。
TEAD抑制剂,用于治疗KRAS突变的PDAC和其他癌症。第二,我将确定YAP1-
维持KRAS独立生长的受调控基因,支持YAP1克服KRAS的模型-
通过恢复KRAS调节的关键基因的表达而成瘾。最后,我将确定KRAS调节的代谢
既由YAP1激活维持,又对PDAC生长重要的过程。加在一起,我的
研究可能证实对所有KRAS靶向治疗的抵抗的一个重要驱动因素,并定义治疗
克服YAP1驱动的耐药性的方法。这些研究将需要我应用不同的
实验方法的光谱,加深了我对抗癌药物开发关键步骤的理解,
并促进我作为一名独立癌症研究人员的职业发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Cole Edwards其他文献
Alexander Cole Edwards的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Cole Edwards', 18)}}的其他基金
Mechanisms of YAP1-driven resistance to KRAS-G12C inhibition
YAP1 驱动的 KRAS-G12C 抑制抵抗机制
- 批准号:
10675482 - 财政年份:2022
- 资助金额:
$ 3.78万 - 项目类别:
相似海外基金
Delays in Acquisition of Oral Antineoplastic Agents
口服抗肿瘤药物的获取延迟
- 批准号:
9975367 - 财政年份:2020
- 资助金额:
$ 3.78万 - 项目类别:
Eliminate the difficulty of venous puncture in patients receiving antineoplastic agents - Development of a new strategy for the prevention of induration-
消除接受抗肿瘤药物的患者静脉穿刺的困难 - 制定预防硬结的新策略 -
- 批准号:
16K11932 - 财政年份:2016
- 资助金额:
$ 3.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of the antineoplastic agents inhibiting DNA replication and their applications to cancer patient treatmen
抗肿瘤药物抑制DNA复制的分子机制及其在癌症患者治疗中的应用
- 批准号:
19591274 - 财政年份:2007
- 资助金额:
$ 3.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
PNET EXPERIMENTAL THERAPEUTICS--ANTINEOPLASTIC AGENTS AND TREATMENT DELIVERY
PNET 实验治疗——抗肿瘤药物和治疗实施
- 批准号:
6346309 - 财政年份:2000
- 资助金额:
$ 3.78万 - 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
- 批准号:
2885074 - 财政年份:1999
- 资助金额:
$ 3.78万 - 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
- 批准号:
6174221 - 财政年份:1999
- 资助金额:
$ 3.78万 - 项目类别:














{{item.name}}会员




