Effect of right-ventricular structural remodeling during pressure overload on the mechanical behavior of myofibers in excised human myocardium

压力超负荷时右心室结构重塑对离体心肌肌纤维机械行为的影响

基本信息

  • 批准号:
    10543042
  • 负责人:
  • 金额:
    $ 1.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT Chronic pressure overload in the right ventricle (RV), such as that experienced in pulmonary hypertension (PH), leads to structural remodeling of the myocardium as the RV attempts to maintain hemodynamic function. Remodeling is characterized by chronic stiffening and rearrangement of the myofiber layers that compose the myocardium, which is thought to play a significant role in the late stages of RV failure. The underlying microstructural mechanisms and the precise role of remodeling of the RV during disease progression are not well understood, largely due to the inability of current cardiac imaging modalities and biomechanical experimental techniques to probe the myocardium microstructure either in vivo or in bench-top experiments. In this F32, a new and unique bench-top experimental configuration is proposed that can directly detect myofiber stretches and rotations during two-dimensional passive stretch of excised human RV tissue using ultrasound imaging. The sub-wavelength ultrasound imaging technique is based on calculation of the spatial coherence of the backscattered ultrasound field, and has translational potential for clinical use. The experimental configuration will be used to directly assess the mechanical behavior of RV myofibers during passive stretch in excised human RV tissues that have undergone structural remodeling during chronic pressure overload. Thus the proposed experiments will elucidate the micromechanical nature of RV structural remodeling. Histological sectioning will allow for direct correlation between microstructural remodeling and the measured differences in mechanical response between remodeled myocardium and healthy control tissue, thus shedding light on the microstructural origins of structural remodeling of the RV during chronic pressure overload. Specific Aim #1 employs passive stretches that occur much slower than during diastole, thus approximating static deformations. Specific Aim #2 investigates stretches that occur at similar rates to those experienced in vivo during diastole, thus the dynamic passive mechanical behavior of RV myofibers will be explored. The proposed research is part of a multifaceted training and professional development plan that will take place during the award period. The experiments and analyses associated with the execution of the Specific Aims will involve in-depth and hands-on training experience for the applicant in both biomedical ultrasound imaging and experimental biomechanics research techniques. Co-mentors for the proposal have successful track records in translational biomedical research, thus training will include experience in bridging the gap between basic research and translation into clinical applications – the so-called “valley of death.” The collaborative environment within the Vascular Medicine Institute at the University of Pittsburgh Medical Center includes a culture that is dedicated to the training of NIH T32 and F32 trainees, and provides a wealth of opportunities to share and discuss advances with leading investigators in basic, translational, and clinical research in the field of vascular medicine through seminars, conferences, and other opportunities for professional development.
摘要

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Cormack其他文献

John Cormack的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Cormack', 18)}}的其他基金

Effect of right-ventricular structural remodeling during pressure overload on the mechanical behavior of myofibers in excised human myocardium
压力超负荷时右心室结构重塑对离体心肌肌纤维机械行为的影响
  • 批准号:
    10315080
  • 财政年份:
    2021
  • 资助金额:
    $ 1.08万
  • 项目类别:

相似海外基金

Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
  • 批准号:
    2344156
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Standard Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
  • 批准号:
    2340918
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Continuing Grant
Seismic Tomography Models for Alaska: Validation, Iteration, and Complex Anisotropy
阿拉斯加地震层析成像模型:验证、迭代和复杂各向异性
  • 批准号:
    2342129
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Continuing Grant
CEDAR: Evaluating Ion Temperature Anisotropy in the Weakly Collisional F-region Ionosphere
CEDAR:评估弱碰撞 F 区电离层中的离子温度各向异性
  • 批准号:
    2330254
  • 财政年份:
    2023
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Standard Grant
A novel fluorescence anisotropy imaging for imaging nano-scale LLPS in living cells
一种用于活细胞中纳米级 LLPS 成像的新型荧光各向异性成像
  • 批准号:
    23K17398
  • 财政年份:
    2023
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Lower mantle seismic anisotropy and heterogeneities - insight from the thermoelastic properties of CaSiO3 perovskite
下地幔地震各向异性和异质性——从 CaSiO3 钙钛矿热弹性性质的洞察
  • 批准号:
    2240506
  • 财政年份:
    2023
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Continuing Grant
Origin of intracellular anisotropy investigated by FCS utilizing spatial information
利用空间信息的 FCS 研究细胞内各向异性的起源
  • 批准号:
    23K05776
  • 财政年份:
    2023
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Advanced Research into Crystallographic Anisotropy & Nucleation Effects in single crystals (ARCANE)
晶体各向异性的高级研究
  • 批准号:
    EP/X025454/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Research Grant
Synchrotron deformation experiments of olivine under the deep upper mantle conditions: Transient creep, plastic anisotropy, and the role of grain-boundary sliding.
上地幔深部条件下橄榄石的同步加速变形实验:瞬态蠕变、塑性各向异性和晶界滑动的作用。
  • 批准号:
    2322719
  • 财政年份:
    2023
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Continuing Grant
Global optimization of anisotropy in antiferromagnets
反铁磁体各向异性的全局优化
  • 批准号:
    2740295
  • 财政年份:
    2022
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了