Generating multilayered engineered heart tissue patches to mimic physiological thickness and function using open microfluidics
使用开放微流体生成多层工程心脏组织补片以模拟生理厚度和功能
基本信息
- 批准号:10544139
- 负责人:
- 金额:$ 4.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-16 至 2026-06-15
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAnimal ModelAnimalsArchitectureAreaBlood VesselsCalciumCaliberCardiacCardiac MyocytesCause of DeathCell Culture TechniquesCellsCessation of lifeCollagenComplexContractsCoupledCulture TechniquesDataDevelopmentEFRACEncapsulatedEndothelial CellsEndotheliumEngineeringExtracellular MatrixFiberFibrinFutureGelGenerationsGoalsHeartHeart DiseasesHeart failureHumanHydrogelsImplantIn SituIn VitroInvestigationIsometric ExerciseLeadLengthLiquid substanceMeasurementMeasuresMechanicsMethodsMicrofluidic MicrochipsMicrofluidicsMorphologyNatural regenerationNecrosisNeedlesPatientsPatternPerfusionPharmaceutical PreparationsPhysiologicalPolyethylene GlycolsRegenerative MedicineSarcomeresShapesStainsStimulusStructureSurfaceSurface TensionTechniquesThickThinnessTissue EngineeringTissuesTranslatingTreesVascularizationWorkangiogenesisbasebioprintingcardiac implantcardiac tissue engineeringconfocal imagingcrosslinkdensityhealthy lifestyleheart damageheart functionimplantationimprovedin vivomimeticsnovelnovel strategiesshear stressstem cellssuccessvirtual
项目摘要
PROJECT SUMMARY/ABSTRACT
Heart disease is the leading cause of death in the U.S., often driven by irreversible cardiac tissue damage
leading to heart failure. Cardiac tissue does not naturally regenerate, and thus is an important area of focus for
tissue engineering. Previous development into engineered heart tissue (EHT) "patches" with some functional
architecture such as pre-patterned vasculature and alignment has shown promising results when implanted
into small animal models. Moreover, injected stem cells and implanted cardiac "sheets" have shown some
success in restoring some cardiac function when implanted into infarcted hearts of large animals or humans.
Despite these successes, scaling EHT that incorporates important functional features such as vascularization
and alignment to a physiological thickness (cm-scale) remains a major engineering challenge.
The overarching goal of this proposal is to generate in vitro physiologically thick heart tissue patches that can
ultimately be implanted into patients to replace damaged tissue. Two key considerations for recapitulating
native tissue are (1) cardiac tissue is highly vascularized, and (2) alignment of cells and extracellular matrix
within each physiological layer is critical to function. We address these challenges utilizing novel open
microfluidic patterning approaches. Our open microfluidic technological advancement offers unique benefits to
EHT; for example, it is compatible with virtually any hydrogel, including standard extracellular matrix material
such as collagen and fibrin, used extensively for EHT. It is also compatible with specialized stimuli-responsive
engineered hydrogels, opening up possibilities for complex engineered tissues with spatial and temporal
control. Further, the flow of precursor fluid is driven by passive surface tension forces; thus, sensitive stem-cell-
derived cells are not exposed to shear stress from extrusion through a needle or photochemical crosslinking,
which are requirements for other tissue fabrication techniques such as 3D bioprinting. Finally, a large area (cm-
scale) can be patterned with a single pipetting step, making this fabrication approach ideal for generating large
(cm-scale) tissues. In this proposal, I apply these unique attributes of open microfluidic pattering to EHT.
Specifically, the ability to pattern enzymatically degradable gels through a background of standard cell culture
ECM materials such as collagen or fibrin enables the patterning of complex vasculature in three dimensions. I
will also take advantage of previously demonstrated modular stacking of open microfluidic devices and
suspended microfluidics to generate aligned EHT patches. In these patches, the tissue is anchored on either
end, inducing ECM remodeling and alignment. Each layer is generated and aligned independently. Then, they
are stacked together at an angle from the previous layer, creating a multilayered tissue mimicking the heart's
helical tissue fiber alignment. As such, I will address in two independent aims, vascularization and tissue
alignment of physiologically thick EHT using open microfluidics.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amanda Jean Haack其他文献
Amanda Jean Haack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amanda Jean Haack', 18)}}的其他基金
Generating multilayered engineered heart tissue patches to mimic physiological thickness and function using open microfluidics
使用开放微流体生成多层工程心脏组织补片以模拟生理厚度和功能
- 批准号:
10230405 - 财政年份:2021
- 资助金额:
$ 4.19万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
Research Grant














{{item.name}}会员




