Engineering thick human cardiac tissue constructs with patterned, perfusable microvessels for treatment of myocardial infarction
用图案化、可灌注的微血管构建厚的人体心脏组织,用于治疗心肌梗塞
基本信息
- 批准号:10540305
- 负责人:
- 金额:$ 0.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2022-06-15
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressArchitectureBlood VesselsBlood flowCardiacCardiac DeathCardiac MyocytesCardiovascular DiseasesCause of DeathCell SurvivalCellsCicatrixClinicalCollagenComplexCouplingDisease ProgressionEndothelial CellsEndotheliumEngineeringEquilibriumExcisionFutureHeartHeart TransplantationHeart failureHistologicHumanImageImplantIn VitroInfiltrationInjectionsLeft ventricular structureLegal patentMoldsMorphologyMuscleMyocardial InfarctionNatural regenerationNecrosisNutrientOpticsPalliative CarePatternPerfusionPersonsPluripotent Stem CellsRattusTechniquesTechnologyTestingThickThinnessTissue EngineeringTissue GraftsTissue SurvivalTissue constructsTissuesVascularizationcardiac tissue engineeringcollagen scaffoldcoronary vasculaturecurative treatmentsdensitydesignendothelial stem cellheart functionimplantationimprovedin vivolithographymicroangiographypreventprocess optimizationregenerative approachresponsescaffoldself assemblystem cell technologystem cellssuccess
项目摘要
PROJECT SUMMARY
Causing the death of more than 17 million people every year, cardiovascular disease is the leading cause
of death worldwide. Progressive heart failure caused by myocardial infarction, or death of cardiac tissue due to
a blockage in the coronary vasculature, is a major contributor to this burden. During a heart attack, up to 25% of
the left ventricle’s contractile cells may be lost, leading to a remodeling response that leaves the heart wall thin
and scarred and greatly reduces cardiac function. Besides whole heart transplantation, available treatment
options can only slow the progression of disease and provide palliative care. As such, there is a great clinical
need for therapies that prevent or treat the ruinous aftermath of myocardial infarction by restoring both the muscle
tissue and the complex vasculature that is needed to support the muscle tissue. Implantable cellularized cardiac
patches have emerged as a potential approach to treat myocardial infarction because complex tissues can be
created by tuning architecture and allowing the tissues to mature. Although advances in tissue engineering and
pluripotent stem cell technology have resulted in cardiac tissues that show promise for improving heart function,
current implantable cellularized cardiac patches remain insufficiently thin due to inadequate nutrient supply.
Previous approaches of vascularizing cardiac tissues have heavily relied on self-assembly of endothelial
networks, leaving them minimally perfusable, or utilize scaffold materials that inadequately balance the stiffness
required for vascular integrity with the remodeling capacity needed support cardiomyocyte coupling and rapid
host vascular infiltration needed for efficient perfusion in vivo. To address this need, we propose to engineer
thick, densely cellularized cardiac patches by incorporating a patterned, perfusable vasculature into a
collagen scaffold for implantation onto infarcted hearts. Our group has previously developed a technique
incorporating injection molding and soft lithography to generate perfusable vasculatures embedded within
collagen matrices and demonstrated that endothelial cells will readily remodel the matrix while the perfusable
vasculature remains intact. In this proposal, we will utilize this technique to generate cardiac tissues containing
stem cell-derived cardiomyocytes and perfusable networks of stem cell-derived endothelial cells. We
hypothesize that incorporating patterned, perfusable endothelial networks into cardiac tissues will
enhance cardiomyocyte survival and function in vitro as well as promote rapid host vascular integration
and tissue survival after implantation. To test this hypothesis, we will utilize a multilayer stacking technique
to generate 3-mm thick cardiac tissues with a three-dimensional vascular network to enable greater tissue
perfusion. We will assess tissue survival, maturation, and function in these tissues and similar tissues without
perfusable vascular networks. We will then implant thick cardiac tissues onto infarcted rat hearts and investigate
whether pre-perfused endothelial networks improve long-term survival of thick tissues. If successful, this platform
will enable long-term survival of thicker cardiac tissues than has previously been achieved.
项目摘要
心血管疾病是导致每年超过1700万人死亡的主要原因
世界范围内的死亡心肌梗死引起的进行性心力衰竭,或由于
冠状血管系统中的阻塞是这种负担的主要原因。在心脏病发作期间,
左心室的收缩细胞可能会丢失,导致重塑反应,使心脏壁变薄
留下疤痕,大大降低心脏功能。除了全心脏移植,
选择只能减缓疾病的发展,提供姑息治疗。因此,有一个伟大的临床
需要通过恢复肌肉和心脏功能来预防或治疗心肌梗死的破坏性后果的疗法,
组织和支持肌肉组织所需的复杂脉管系统。植入式细胞化心脏
由于复杂的组织可以被
通过调整结构和允许组织成熟而产生。虽然组织工程学的进展和
多能干细胞技术已经产生了显示出改善心脏功能的前景的心脏组织,
由于营养供应不足,目前的可植入细胞化心脏补片仍然不够薄。
以前的心脏组织血管化方法严重依赖于内皮细胞的自组装,
网络,使它们最低限度地灌注,或利用不充分平衡刚度的支架材料,
血管完整性所需的重塑能力所需的支持心肌细胞耦合和快速
体内有效灌注所需的宿主血管浸润。为了满足这一需求,我们建议设计
通过将图案化的、可灌注的脉管系统结合到一个厚的、密集的细胞化的心脏补片中,
用于移植到梗塞心脏上的胶原支架。我们的团队以前开发了一种技术
结合注射成型和软平版印刷以产生嵌入其中的可灌注血管
胶原基质,并证明内皮细胞将很容易重塑基质,而可灌注的
血管系统保持完整在这个建议中,我们将利用这种技术来产生心脏组织,
干细胞衍生的心肌细胞和干细胞衍生的内皮细胞的可灌注网络。我们
假设将图案化的、可灌注的内皮网络并入心脏组织将
增强体外心肌细胞存活和功能以及促进快速宿主血管整合
和移植后的组织存活率。为了验证这一假设,我们将利用多层堆叠技术
以生成具有三维血管网络的3毫米厚的心脏组织,
灌注。我们将评估这些组织和类似组织中的组织存活、成熟和功能,
可灌注的血管网然后,我们将在梗塞的大鼠心脏上植入厚的心脏组织,
预灌注的内皮网络是否改善厚组织的长期存活。如果成功,这个平台
将使较厚的心脏组织能够比以前实现的长期存活。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicole Zeinstra其他文献
Nicole Zeinstra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicole Zeinstra', 18)}}的其他基金
Engineering thick human cardiac tissue constructs with patterned, perfusable microvessels for treatment of myocardial infarction
用图案化、可灌注的微血管构建厚的人体心脏组织,用于治疗心肌梗塞
- 批准号:
10231444 - 财政年份:2021
- 资助金额:
$ 0.67万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 0.67万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 0.67万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 0.67万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 0.67万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 0.67万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 0.67万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 0.67万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 0.67万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 0.67万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 0.67万 - 项目类别:
Research Grant