Molecular determinants of synaptic diversity at the nanoscale

纳米尺度突触多样性的分子决定因素

基本信息

  • 批准号:
    10543065
  • 负责人:
  • 金额:
    $ 4.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-10 至 2023-11-09
  • 项目状态:
    已结题

项目摘要

-Abstract - Synapses are the fundamental units of communication in the nervous system and reliable synaptic transmission is central to key nervous system processes such as learning, memory, and sensory adaptation. Moreover, due to dysfunctions at the synapse, many neurological diseases may develop. While electrophysiological studies of synaptic transmission have been around for a long time, only the recent development of optical quantal analysis (OQA) tools has made possible to correlate morphological and structural elements to transmission properties of individual synapses. Studies using OQA have revealed a much larger diversity in synaptic transmission, even among neighboring synapses, than was previously thought. The advent of higher-resolution OQA, such as the one developed in our lab called “QuaSOR”, and super-resolution structural imaging methods opens up an exciting frontier of being able to investigate how neural activity shapes (and is shaped by) synaptic diversity, what are the molecular determinants and mechanisms the set this diversity, and how do these molecular determinants shape synaptic diversity. By using OQA, we've shown that synaptic diversity, as measured by difference in synaptic strength (i.e., probability of action potential evoked transmission; Pr ) is extremely heterogeneous (Pr: 0.01–0.5) within a single neuron synapsing onto a single target cell. This high degree of heterogeneity leads us to the central hypothesis of my thesis which is that synaptic strength is set by a very precise, local distribution of key proteins. To test this hypothesis I will use the model glutamatergic synapse–Drosophila melanogaster larval neuromuscular junction (NMJ)– where I will investigate hundreds of synapses in parallel, in vivo, and address synaptic heterogeneity from both functional and structural perspectives at single synapse resolution (50-100nm). For my thesis I am being trained in synaptic physiology, fly genetics, and advanced super-resolution functional/structural imaging and analysis. In Aim 1 of my thesis, I will establish the degree of functional synaptic heterogeneity in vivo single synapses using QuaSOR. Specifically, I have completed the preliminary experiments investigating the extent of basal synaptic heterogeneity and addressing the relationship between basal strength of synapses (basal Pr) and synaptic adaptation to higher frequencies. Through super-resolution structural imaging experiments proposed for Aim 2, I will investigate some of the key proteins at the synapse and determine whether it's the local quantities, the relative abundance between them (ratios), and/or the nanolocalization within the synapse that shape synaptic diversity. Finally, for Aim 3, through chronic and acute manipulations, I will determine the role of Unc-13a in shaping this diversity. Through the combination of super resolution structural and functional imaging, this proposed work will yield much needed insight into the molecular determinants that may shape synaptic diversity.
- 摘要- 突触是神经系统中进行通讯的基本单位, 传递是关键神经系统过程如学习、记忆和感觉适应的中枢。 此外,由于突触的功能障碍,许多神经系统疾病可能会发展。而 突触传递的电生理学研究已经存在了很长一段时间,只有最近才有 光学量子分析(OQA)工具的发展使得将形态和结构相关联成为可能。 元件到单个突触的传输特性。使用OQA的研究显示, 突触传递的多样性,甚至在相邻的突触之间,比以前认为的要多。问世 更高分辨率的OQA,如我们实验室开发的“OQSOR”,和超分辨率结构 成像方法开辟了一个令人兴奋的前沿,能够研究神经活动如何形成(并 突触的多样性,什么是分子决定因素和机制,设置这种多样性, 这些分子决定因素如何塑造突触多样性。 通过使用OQA,我们已经证明了突触多样性,如通过突触强度的差异(即, 动作电位诱发传输的概率; Pr)在单个 神经元与单个靶细胞形成突触。这种高度的异质性将我们引向中心假设 那就是突触的强度是由一个非常精确的,关键蛋白质的局部分布决定的。为了验证这一 假设我将使用模型神经元突触-果蝇幼虫神经肌肉接头 (NMJ)-在那里我将研究数百个突触在平行,在体内,并解决突触异质性 从功能和结构两个角度来看,在单个突触分辨率(50- 100 nm)。为了我的论文, 接受突触生理学、果蝇遗传学和高级超分辨率功能/结构成像方面的培训 和分析在我的论文的目标1中,我将建立在体内单一的功能性突触异质性的程度, 突触使用的神经元。具体来说,我已经完成了初步实验,调查 基础突触异质性和解决突触的基础强度(基础Pr)和 突触对更高频率的适应。通过超分辨率结构成像实验提出 对于目标2,我将研究突触中的一些关键蛋白质,并确定它是否是局部量, 它们之间的相对丰度(比率)和/或形成突触的突触内的纳米定位 多样性最后,对于目标3,通过慢性和急性操作,我将确定Unc-13 a在以下方面的作用: 塑造这种多样性。通过超分辨率结构和功能成像的结合, 这项工作将使我们对可能形成突触多样性的分子决定因素有更深入的了解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dariya Bakshinskaya其他文献

Dariya Bakshinskaya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dariya Bakshinskaya', 18)}}的其他基金

Molecular determinants of synaptic diversity at the nanoscale
纳米尺度突触多样性的分子决定因素
  • 批准号:
    10389011
  • 财政年份:
    2021
  • 资助金额:
    $ 4.16万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了