mDOT TR&D1 (Discovery) - Enabling the Discovery of Temporally-Precise Intervention Targets and Timing Triggers from mHealth Biomarkers via Uncertainty-Aware Modeling of Personalized Risk Dynamics
mDOT TR
基本信息
- 批准号:10541804
- 负责人:
- 金额:$ 16.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdverse eventArchitectureAreaAwarenessBehaviorBiological MarkersBudgetsCellular PhoneChronic DiseaseCollectionCommunitiesCompanionsComplementComplexComputer softwareDataData AnalysesData SourcesDecision MakingDevelopmentDevicesDisease ProgressionDropoutEffectivenessEnsureEventExerciseFatigueFeedbackGenerationsGraphHealthHealth behavior changeHealthcareIndividualInfrastructureInterventionInvestigationKnowledgeLeadLearningLengthLifeMaintenanceMeasuresMedicalMedicineMetadataMethodsModalityModelingMoodsNatureNeural Network SimulationNon-linear ModelsOutcomeParticipantPatientsPatternPhysical activityPopulationPrivacyProcessPsychological reinforcementResearchResearch PersonnelResourcesRiskRisk AssessmentRisk FactorsRunningSeriesServicesSleepSmokingStressSystemTechnologyTimeTrainingTranslationsTreatment EfficacyUncertaintyWorkadaptive interventionbiopsychosocialcigarette smokingcloud basedcravingdata modelingdesignfield studyforgettinghealthy lifestyleimprovedinterestlearning strategymHealthmachine learning methodmobile sensormultimodalityneural networknovelopen sourcepatient engagementpersonalized learningpreventpublic health relevancerecurrent neural networksedentary lifestylesensorsuccesssynergismtechnological innovationtechnology research and developmenttherapy designtoolusabilitywearable devicewireless
项目摘要
Project Lead: Rehg, Jim Primary Investigator: Kumar, Santosh
TR&D1: Enabling the Discovery of Temporally-Precise Intervention Targets and Timing Triggers from
mHealth Biomarkers via Uncertainty-Aware Modeling of Personalized Risk Dynamics
Lead: Dr. Jim Rehg, Georgia Tech; 10% effort (0.9 CM)
Abstract: The mHealth Center for Discovery, Optimization & Translation of Temporally-Precise Interventions
(the mDOT Center) will enable a new paradigm of temporally-precise medicine to maintain health and manage
the growing burden of chronic diseases. The mDOT Center will develop and disseminate the methods, tools,
and infrastructure necessary for researchers to pursue the discovery, optimization and translation of temporally-
precise mHealth interventions. Such interventions, when dynamically personalized to the moment-to-moment
biopsychosocial-environmental context of each individual, will precipitate a much-needed transformation in
healthcare by enabling patients to initiate and sustain the healthy lifestyle choices necessary for directly
managing, treating, and in some cases even preventing the development of medical conditions. Organized
around three Technology Research & Development (TR&D) projects, mDOT represents a unique national
resource that will develop multiple technological innovations and support their translation into research and
practice by the mHealth community in the form of easily deployable wearables, apps for wearables and
smartphones, and a companion mHealth cloud system, all open-source.
TR&D1 will develop, evaluate and disseminate methods to analyze population-scale multi-modal time series of
mHealth biomarkers to enable research on identifying the momentary risk factors and risk dynamics that drive
adverse health outcomes, while accounting for the uncertainty and missingness inherent in these data sources.
TR&D1 will do this under three aims. Aim 1 will address missing sensor data in mHealth field studies and develop
state-of-the art imputation models using novel deep probabilistic neural networks that leverage the hierarchical
nature of biomarker computation graphs. Aim 2 will address compressing a collection of biomarkers that serve
as risk factors for a particular adverse health event into a single risk score, to support the online adaptation of
decision rules in TR&D2, using longitudinal data that include multiple instances of adverse events and their
contexts. In addition to risk scoring, we will also develop models for receptivity to intervention and participant
engagement, which complement the assessment of risk in guiding intervention design. Aim 3 will begin to tackle
the critical issue of providing model-based tools for identifying which potential risk factors actually impact risk in
different contexts for different individuals, in order to support the intervention design process. TR&D1 will work
with its collaborative projects to ensure that it focuses on the most pressing problems facing the mobile health
research community. TR&D1 will disseminate its technologies to service projects and the community as software
packages and cloud-based data analysis tools, to ensure the usability of these technologies by investigators who
are external to the mDOT investigating team. TR&D1 will synergistically work in partnership with the other TR&D
projects, the Training and Dissemination Core, and the Administration Core to maximize both the research and
societal impact of TR&D1 technologies.
1
项目负责人:Rehg,Jim主要调查员:Kumar,Santosh
Tr&d1:能够发现时间上精确的干预目标和时间触发因素
通过个性化风险动力学的不确定性感知建模的mHealth生物标记物
领队:佐治亚理工学院Jim Rehg博士;10%努力(0.9 CM)
摘要:移动健康中心发现、优化和翻译时间精确干预措施
(MDOT中心)将实现一种时间精准医学的新范式,以维持健康和管理
慢性病带来的负担越来越大。MDOT中心将开发和传播方法、工具、
和基础设施,为研究人员进行发现、优化和翻译临时-
精确的移动健康干预。这种干预,当动态地个性化到每一时刻时
每个人的生物-心理-社会-环境背景,将在
医疗保健,使患者能够开始并维持直接
管理、治疗,在某些情况下甚至阻止医疗条件的发展。有条理的
围绕着三个技术研发项目,MDOT代表着一个独特的国家
将开发多种技术创新并支持将其转化为研究和
MHealth社区以可轻松部署的可穿戴设备、可穿戴设备应用程序和
智能手机,以及与之配套的mHealth云系统,都是开源的。
技术研究与发展司将制定、评估和传播分析人口规模多模式时间序列的方法
移动健康生物标记物,使研究能够识别瞬时风险因素和推动
不利的健康后果,同时解释了这些数据来源固有的不确定性和缺失性。
Tr&d1将在三个目标下做到这一点。目标1将解决移动健康领域研究和开发中缺失的传感器数据
使用新型深度概率神经网络的最新归罪模型,该网络利用分层
生物标志物计算图的性质。目标2将解决压缩生物标记物集合的问题
作为特定不良健康事件的风险因素纳入单一风险分值,以支持在线适应
TR&D2中的决策规则,使用包括不良事件及其
上下文。除了风险评分,我们还将开发干预和参与者接受程度的模型
参与度,它补充了指导干预设计的风险评估。目标3将开始铲球
提供基于模型的工具以确定哪些潜在风险因素在
针对不同个体的不同背景,以支持干预设计过程。Tr&d1将起作用
及其协作项目,以确保其专注于移动医疗面临的最紧迫问题
研究社区。T&D将以软件的形式向项目和社区传播其技术
包和基于云的数据分析工具,以确保调查人员使用这些技术
是MDOT调查小组的外部人员。技术研究与开发主任将与其他研究与开发部门协同工作
项目,培训和传播核心,以及行政核心,以最大限度地提高研究和
技术研究与开发技术的社会影响。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James M. Rehg其他文献
Information Theoretic MPC Using Neural Network Dynamics
使用神经网络动力学的信息论 MPC
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Grady Williams;Nolan Wagener;Brian Goldfain;P. Drews;James M. Rehg;Byron Boots;Evangelos A. Theodorou - 通讯作者:
Evangelos A. Theodorou
Visual tracking with deformation models
使用变形模型进行视觉跟踪
- DOI:
- 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
James M. Rehg;A. Witkin - 通讯作者:
A. Witkin
Shadow Elimination and Blinding Light Suppression for Interactive Projected Displays
交互式投影显示器的阴影消除和眩目光抑制
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:5.2
- 作者:
J. Summet;M. Flagg;Tat;James M. Rehg;R. Sukthankar - 通讯作者:
R. Sukthankar
Learning Continuous-Time Hidden Markov Models for Event Data
学习事件数据的连续时间隐马尔可夫模型
- DOI:
10.1007/978-3-319-51394-2_19 - 发表时间:
2017 - 期刊:
- 影响因子:2.5
- 作者:
Yu;Alexander Moreno;Shuang Li;Fuxin Li;Le Song;James M. Rehg - 通讯作者:
James M. Rehg
Learning the basic units in American Sign Language using discriminative segmental feature selection
使用判别性分段特征选择学习美国手语的基本单位
- DOI:
10.1109/icassp.2009.4960694 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Pei Yin;Thad Starner;H. Hamilton;Irfan Essa;James M. Rehg - 通讯作者:
James M. Rehg
James M. Rehg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James M. Rehg', 18)}}的其他基金
Data-driven multidimensional modeling of nonverbal communication in typical and atypical development
典型和非典型发展中非语言交流的数据驱动多维建模
- 批准号:
9750288 - 财政年份:2018
- 资助金额:
$ 16.52万 - 项目类别:
Data-driven multidimensional modeling of nonverbal communication in typical and atypical development
典型和非典型发展中非语言交流的数据驱动多维建模
- 批准号:
10188635 - 财政年份:2018
- 资助金额:
$ 16.52万 - 项目类别:
相似海外基金
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 16.52万 - 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
- 批准号:
479728 - 财政年份:2023
- 资助金额:
$ 16.52万 - 项目类别:
Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
- 批准号:
10884567 - 财政年份:2023
- 资助金额:
$ 16.52万 - 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
- 批准号:
10751964 - 财政年份:2023
- 资助金额:
$ 16.52万 - 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
- 批准号:
486321 - 财政年份:2022
- 资助金额:
$ 16.52万 - 项目类别:
Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10676786 - 财政年份:2022
- 资助金额:
$ 16.52万 - 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10440970 - 财政年份:2022
- 资助金额:
$ 16.52万 - 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
- 批准号:
10642998 - 财政年份:2022
- 资助金额:
$ 16.52万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10482465 - 财政年份:2022
- 资助金额:
$ 16.52万 - 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
- 批准号:
10191053 - 财政年份:2020
- 资助金额:
$ 16.52万 - 项目类别: