Combined computational and structural studies to create novel macromolecular recognition properties
结合计算和结构研究来创造新的大分子识别特性
基本信息
- 批准号:10543489
- 负责人:
- 金额:$ 35.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAlgorithmsAmino Acid SequenceBase PairingBehaviorBindingBinding ProteinsBinding SitesBiochemicalBiologicalBlindedCollaborationsComplexComplex MixturesComputer AnalysisComputer ModelsCrystallographyDNADNA BindingDNA-Binding ProteinsDissectionDockingDrug DesignElectrostaticsEngineeringEquilibriumHybridsHydrogen BondingLigand BindingLigandsModelingMolecularMotivationMutagenesisPerformanceProcessPropertyProtein ConformationProtein EngineeringProteinsProtocols documentationResolutionReverse engineeringRunningSamplingScaffolding ProteinSeriesSolventsSpecificityStructureSurfaceSystemTandem Repeat SequencesTestingVariantWorkX-Ray Crystallographydata resourcedesigndesign verificationimprovednovelpressureprotein complexprotein foldingprotein structuresmall moleculestatistical and machine learning
项目摘要
PROJECT SUMMARY
The design of macromolecular binding interactions and complexes, and corresponding alteration of binding
specificity, is a challenging endeavor that remains recalcitrant to computational approaches. This is true both
for the creation of protein-protein complexes (which are driven by a enthalpic changes established primarily by
stereochemical complementarity, balanced against large competing entropic changes) and for the redesign of
protein-DNA complexes (which are heavily dependent upon DNA bending, hydrogen-bonds, electrostatic
contacts, and the presence of solvent and counterions throughout the molecular interface).
Over the past several years we have collaborated with several computational groups to help develop and
validate computational approaches for the design and optimization of protein-protein recognition, protein-DNA
recognition, and protein-small molecule recognition. Those studies have contributed to several new
computational engineering approaches, including hybrid strategies that combine ab initio design of protein
folds and binding sites, the ‘Rotamer Interaction Feld’ (RIF) docking protocol for efficient sampling of protein
sequence and conformation, and novel parametric design approaches to create new tandem repeat proteins.
We propose to continue this work through two specific aims to further develop and improve upon
computational approaches for protein design. As part of this project, we will solve atomic resolution crystal
structures of many selected and designed molecular complexes and provide them to our immediate
collaborators as well as to a public structure prediction project, for computational prediction challenges.
Aim 1. We will design and characterize novel self-associating circular tandem repeat proteins (using both de
novo computational design and using high-throughput selections) and then further design them to undergo
ligand-induced protein-protein association. Beyond the challenge of combining protein scaffold design and
ligand binding design, the motivation for this aim is to determine the structural and mechanistic features of
small molecule ligand-binding, and balance of forces, that facilitate ligand-induced protein-protein association.
Aim 2. We will improve our understanding and ability to design novel protein-DNA recognition specificities and
behaviors. To accomplish this, we will: (1) Systematically select and optimize a series of variants of a model
DNA-binding protein, that display altered binding specificity across two regions of partially overlapping
sequential clusters of basepairs and neighboring protein residues. (2) Determine the high-resolution structures
and binding behavior of each construct. (3) Supervise blinded computational efforts, using multiple
approaches, to predict the same structures. (4) Compare and analyze the results of computational predictions
versus multiple computational prediction strategies to define features influencing predictive accuracy.
For both aims, we will further exploit our crystallographic structures by computationally ‘reverse engineering’
each construct using validated protein structures, to further understand the performance of design approaches.
项目总结
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
De novo design of protein homodimers containing tunable symmetric protein pockets.
- DOI:10.1073/pnas.2113400119
- 发表时间:2022-07-26
- 期刊:
- 影响因子:11.1
- 作者:
- 通讯作者:
Design of functionalised circular tandem repeat proteins with longer repeat topologies and enhanced subunit contact surfaces.
- DOI:10.1038/s42003-021-02766-y
- 发表时间:2021-10-29
- 期刊:
- 影响因子:5.9
- 作者:Hallinan JP;Doyle LA;Shen BW;Gewe MM;Takushi B;Kennedy MA;Friend D;Roberts JM;Bradley P;Stoddard BL
- 通讯作者:Stoddard BL
Stepwise design of pseudosymmetric protein hetero-oligomers.
假对称蛋白质异源寡聚物的逐步设计。
- DOI:10.1101/2023.04.07.535760
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kibler,RyanD;Lee,Sangmin;Kennedy,MadisonA;Wicky,BasileIM;Lai,StellaM;Kostelic,MariusM;Li,Xinting;Chow,CameronM;Carter,Lauren;Wysocki,VickiH;Stoddard,BarryL;Baker,David
- 通讯作者:Baker,David
Immunization with a self-assembling nanoparticle vaccine displaying EBV gH/gL protects humanized mice against lethal viral challenge.
- DOI:10.1016/j.xcrm.2022.100658
- 发表时间:2022-06-21
- 期刊:
- 影响因子:14.3
- 作者:Malhi, Harman;Homad, Leah J.;Wan, Yu-Hsin;Poudel, Bibhav;Fiala, Brooke;Borst, Andrew J.;Wang, Jing Yang;Walkey, Carl;Price, Jason;Wall, Abigail;Singh, Suruchi;Moodie, Zoe;Carter, Lauren;Handa, Simran;Correnti, Colin E.;Stoddard, Barry L.;Veesler, David;Pancera, Marie;Olson, James;King, Neil P.;McGuire, Andrew T.
- 通讯作者:McGuire, Andrew T.
De novo design of knotted tandem repeat proteins.
- DOI:10.1038/s41467-023-42388-y
- 发表时间:2023-10-24
- 期刊:
- 影响因子:16.6
- 作者:Doyle, Lindsey A.;Takushi, Brittany;Kibler, Ryan D.;Milles, Lukas F.;Orozco, Carolina T.;Jones, Jonathan D.;Jackson, Sophie E.;Stoddard, Barry L.;Bradley, Philip
- 通讯作者:Bradley, Philip
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BARRY L. STODDARD其他文献
BARRY L. STODDARD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BARRY L. STODDARD', 18)}}的其他基金
Biophysical and structural studies of protein and enzyme mechanism, evolution, and engineering
蛋白质和酶机制、进化和工程的生物物理和结构研究
- 批准号:
10550521 - 财政年份:2023
- 资助金额:
$ 35.2万 - 项目类别:
Combined computational and structural studies to create novel macromolecular recognition properties
结合计算和结构研究来创造新的大分子识别特性
- 批准号:
10643001 - 财政年份:2021
- 资助金额:
$ 35.2万 - 项目类别:
Combined computational and structural studies to create novel macromolecular recognition properties
结合计算和结构研究来创造新的大分子识别特性
- 批准号:
10372918 - 财政年份:2021
- 资助金额:
$ 35.2万 - 项目类别:
Determination of the basis of ligand binding via engineering and crystallography
通过工程和晶体学确定配体结合的基础
- 批准号:
9134178 - 财政年份:2015
- 资助金额:
$ 35.2万 - 项目类别:
MegaTALS: hyperspecific reagents for targeted gene modification and correction
MegaTALS:用于靶向基因修饰和校正的超特异性试剂
- 批准号:
10080736 - 财政年份:2014
- 资助金额:
$ 35.2万 - 项目类别:
MegaTALS: hyperspecific reagents for targeted gene modification and correction
MegaTALS:用于靶向基因修饰和校正的超特异性试剂
- 批准号:
10312783 - 财政年份:2014
- 资助金额:
$ 35.2万 - 项目类别:
MegaTALS: hyperspecific reagents for targeted gene modification and correction
MegaTALS:用于靶向基因修饰和校正的超特异性试剂
- 批准号:
10615422 - 财政年份:2014
- 资助金额:
$ 35.2万 - 项目类别:
MegaTALS: hyperspecific reagents for targeted gene modification and correction
MegaTALS:用于靶向基因修饰和校正的超特异性试剂
- 批准号:
8629497 - 财政年份:2014
- 资助金额:
$ 35.2万 - 项目类别:
Structural and Biophysical Characterization of Engineered Homing Endonucleases (C
工程化归巢核酸内切酶 (C) 的结构和生物物理表征
- 批准号:
7651365 - 财政年份:2007
- 资助金额:
$ 35.2万 - 项目类别:
Engineering enzymes for anti-tumor suicide gene therapy
用于抗肿瘤自杀基因治疗的工程酶
- 批准号:
7628052 - 财政年份:2007
- 资助金额:
$ 35.2万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 35.2万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 35.2万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 35.2万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 35.2万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 35.2万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 35.2万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 35.2万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 35.2万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 35.2万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 35.2万 - 项目类别:
Research Grant














{{item.name}}会员




