Combined computational and structural studies to create novel macromolecular recognition properties
结合计算和结构研究来创造新的大分子识别特性
基本信息
- 批准号:10372918
- 负责人:
- 金额:$ 13.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAlgorithmsAmino Acid SequenceBehaviorBindingBinding ProteinsBinding SitesBiochemicalBiologicalBlindedComplexComplex MixturesComputer AnalysisComputer ModelsCrystallizationDNADNA BindingDNA-Binding ProteinsDataDissectionDockingDrug DesignElectrostaticsEngineeringEntropyEquilibriumHybridsHydrogen BondingLigand BindingLigandsModelingMolecularMotivationMutagenesisPerformanceProcessPropertyProtein ConformationProtein EngineeringProteinsProtocols documentationResolutionReverse engineeringRunningSamplingScaffolding ProteinSeriesSolventsSpecificityStructureSupervisionSurfaceSystemTandem Repeat SequencesTestingVariantWorkX-Ray Crystallographybasedesignimprovednovelpressureprotein complexprotein foldingprotein structuresmall moleculestatistical and machine learning
项目摘要
PROJECT SUMMARY
The design of macromolecular binding interactions and complexes, and corresponding alteration of binding
specificity, is a challenging endeavor that remains recalcitrant to computational approaches. This is true both
for the creation of protein-protein complexes (which are driven by a enthalpic changes established primarily by
stereochemical complementarity, balanced against large competing entropic changes) and for the redesign of
protein-DNA complexes (which are heavily dependent upon DNA bending, hydrogen-bonds, electrostatic
contacts, and the presence of solvent and counterions throughout the molecular interface).
Over the past several years we have collaborated with several computational groups to help develop and
validate computational approaches for the design and optimization of protein-protein recognition, protein-DNA
recognition, and protein-small molecule recognition. Those studies have contributed to several new
computational engineering approaches, including hybrid strategies that combine ab initio design of protein
folds and binding sites, the ‘Rotamer Interaction Feld’ (RIF) docking protocol for efficient sampling of protein
sequence and conformation, and novel parametric design approaches to create new tandem repeat proteins.
We propose to continue this work through two specific aims to further develop and improve upon
computational approaches for protein design. As part of this project, we will solve atomic resolution crystal
structures of many selected and designed molecular complexes and provide them to our immediate
collaborators as well as to a public structure prediction project, for computational prediction challenges.
Aim 1. We will design and characterize novel self-associating circular tandem repeat proteins (using both de
novo computational design and using high-throughput selections) and then further design them to undergo
ligand-induced protein-protein association. Beyond the challenge of combining protein scaffold design and
ligand binding design, the motivation for this aim is to determine the structural and mechanistic features of
small molecule ligand-binding, and balance of forces, that facilitate ligand-induced protein-protein association.
Aim 2. We will improve our understanding and ability to design novel protein-DNA recognition specificities and
behaviors. To accomplish this, we will: (1) Systematically select and optimize a series of variants of a model
DNA-binding protein, that display altered binding specificity across two regions of partially overlapping
sequential clusters of basepairs and neighboring protein residues. (2) Determine the high-resolution structures
and binding behavior of each construct. (3) Supervise blinded computational efforts, using multiple
approaches, to predict the same structures. (4) Compare and analyze the results of computational predictions
versus multiple computational prediction strategies to define features influencing predictive accuracy.
For both aims, we will further exploit our crystallographic structures by computationally ‘reverse engineering’
each construct using validated protein structures, to further understand the performance of design approaches.
项目总结
大分子结合相互作用和络合物的设计,以及相应的结合改变
专一性,是一项具有挑战性的努力,仍然顽固地反对计算方法。这两件事都是真的
为了产生蛋白质-蛋白质复合体(由主要由
立体化学互补性,与巨大的竞争熵变化相平衡)和重新设计
蛋白质-DNA复合体(严重依赖DNA弯曲、氢键、静电
接触,以及整个分子界面上溶剂和反离子的存在)。
在过去的几年里,我们与几个计算小组合作,帮助开发和
验证蛋白质-蛋白质识别、蛋白质-DNA设计和优化的计算方法
识别和蛋白质-小分子识别。这些研究已经促成了几个新的
计算工程方法,包括结合蛋白质从头计算设计的混合策略
折叠和结合位点,用于有效采样蛋白质的“旋转分子相互作用场”(RIF)对接协议
序列和构象,以及新的参数设计方法来创建新的串联重复蛋白。
我们建议通过两个具体目标继续这项工作,以进一步发展和改进
蛋白质设计的计算方法。作为这个项目的一部分,我们将解决原子分辨率晶体
许多精选和设计的分子络合物的结构,并将它们提供给我们的直接
合作者以及一个公共结构预测项目,以应对计算预测挑战。
目的1.我们将设计和鉴定新的自结合环串联重复蛋白(使用两个De
Novo计算设计和使用高通量选择),然后进一步设计它们以通过
配基诱导的蛋白质-蛋白质结合。超越将蛋白质支架设计和
配体结合设计,其目的是确定配体的结构和机制特征
小分子配体结合和力的平衡,促进配体诱导的蛋白质-蛋白质结合。
目标2.我们将提高我们对设计新的蛋白质-DNA识别特异性和
行为。为此,我们将:(1)系统地选择和优化模型的一系列变体
DNA结合蛋白,在部分重叠的两个区域显示出改变的结合特异性
碱基和邻近蛋白质残基的连续簇。(2)确定高分辨率构造
以及每个构造物的结合行为。(3)监督盲目的计算工作,使用多个
方法,预测相同的结构。(4)对计算预测结果进行比较分析
与定义影响预测准确性的特征的多个计算预测策略相比。
为了达到这两个目标,我们将通过计算“逆向工程”进一步开发我们的晶体结构。
每一种构建都使用了经过验证的蛋白质结构,以进一步了解设计方法的性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BARRY L. STODDARD其他文献
BARRY L. STODDARD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BARRY L. STODDARD', 18)}}的其他基金
Biophysical and structural studies of protein and enzyme mechanism, evolution, and engineering
蛋白质和酶机制、进化和工程的生物物理和结构研究
- 批准号:
10550521 - 财政年份:2023
- 资助金额:
$ 13.71万 - 项目类别:
Combined computational and structural studies to create novel macromolecular recognition properties
结合计算和结构研究来创造新的大分子识别特性
- 批准号:
10543489 - 财政年份:2021
- 资助金额:
$ 13.71万 - 项目类别:
Combined computational and structural studies to create novel macromolecular recognition properties
结合计算和结构研究来创造新的大分子识别特性
- 批准号:
10643001 - 财政年份:2021
- 资助金额:
$ 13.71万 - 项目类别:
Determination of the basis of ligand binding via engineering and crystallography
通过工程和晶体学确定配体结合的基础
- 批准号:
9134178 - 财政年份:2015
- 资助金额:
$ 13.71万 - 项目类别:
MegaTALS: hyperspecific reagents for targeted gene modification and correction
MegaTALS:用于靶向基因修饰和校正的超特异性试剂
- 批准号:
10080736 - 财政年份:2014
- 资助金额:
$ 13.71万 - 项目类别:
MegaTALS: hyperspecific reagents for targeted gene modification and correction
MegaTALS:用于靶向基因修饰和校正的超特异性试剂
- 批准号:
10312783 - 财政年份:2014
- 资助金额:
$ 13.71万 - 项目类别:
MegaTALS: hyperspecific reagents for targeted gene modification and correction
MegaTALS:用于靶向基因修饰和校正的超特异性试剂
- 批准号:
10615422 - 财政年份:2014
- 资助金额:
$ 13.71万 - 项目类别:
MegaTALS: hyperspecific reagents for targeted gene modification and correction
MegaTALS:用于靶向基因修饰和校正的超特异性试剂
- 批准号:
8629497 - 财政年份:2014
- 资助金额:
$ 13.71万 - 项目类别:
Structural and Biophysical Characterization of Engineered Homing Endonucleases (C
工程化归巢核酸内切酶 (C) 的结构和生物物理表征
- 批准号:
7651365 - 财政年份:2007
- 资助金额:
$ 13.71万 - 项目类别:
Engineering enzymes for anti-tumor suicide gene therapy
用于抗肿瘤自杀基因治疗的工程酶
- 批准号:
7628052 - 财政年份:2007
- 资助金额:
$ 13.71万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 13.71万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 13.71万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 13.71万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 13.71万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 13.71万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 13.71万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 13.71万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 13.71万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 13.71万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 13.71万 - 项目类别:
Continuing Grant