Mycobacterial Lung Diseases in Virginia: sequencing and clinical determinants of relapse and outcome
弗吉尼亚分枝杆菌肺病:复发和结果的测序和临床决定因素
基本信息
- 批准号:10543980
- 负责人:
- 金额:$ 67.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAntibioticsApplications GrantsAreaBioinformaticsBiological AssayBiologyChimera organismClinicalCollaborationsDataDiseaseDrug KineticsDrug MonitoringDrug ToleranceDrug resistanceEnvironmentEnvironmental MicrobiologyEnvironmental Risk FactorEpidemiologyExposure toFutureGenotypeGenus MycobacteriumHealthHouseholdIn VitroInfectionInfection ControlLung diseasesMeasuresMicrobial BiofilmsModificationMorbidity - disease rateMycobacterium aviumMycobacterium avium ComplexMycobacterium intracellulareOrganismOutcomePatient-Focused OutcomesPatientsPharmaceutical PreparationsPharmacodynamicsPhenotypePredispositionRegimenRelapseRequest for ApplicationsResearchResistance profileResolutionRoleSample SizeSerumSourceSpecimenSumTriageUnited States National Institutes of HealthUniversitiesVirginiaWaterabsorptionclinical applicationclinical sequencingcohortdrug developmentevidence basegenome sequencingimprovedin vivoindexingindividual patientinnovationinnovative technologiesmolecular diagnosticsmortalitymycobacterialnon-tuberculosis mycobacterianovel therapeuticspharmacokinetics and pharmacodynamicspredict clinical outcomepredictive markerprognosticationprogramsrespiratorytoolwhole genome
项目摘要
PROJECT SUMMARY / ABSTRACT
Nontuberculous mycobacterial lung diseases, primarily due to M. avium complex (MAC), is an increasing
clinical problem nationwide and now overtakes domestic TB in terms of morbidity and mortality. It is also
harder to treat and results in poorer outcomes despite longer drug regimens. In this context NIH issued a
notice AI-17-016 to request applications for NTM diseases. Here we present a proposal from the University of
Virginia, with collaborators at the Virginia Department of Health and Virginia Tech, that addresses many of the
needs that were cited. First, we will perform whole genome sequencing of MAC isolates from all of our state's
MAC lung disease patients to discern relapse versus reinfection and the environmental sources of acquisition.
Second we will utilize a state-wide cohort of new MAC lung disease patients to correlate clinical outcomes with
MAC species, drug susceptibility, serum drug levels, and biofilm bioassay. Innovation includes the use of a
state-wide epidemiological cohort, exquisite resolution with extensive preliminary data of whole genome
sequencing to discern species and mixed infections, a comprehensive state-wide serum drug monitoring
program (as we have done already for TB), and expertise in molecular diagnostics and genotypic-phenotypic
correlations. In sum, for this most vexing clinical problem of MAC lung disease we bring to bear extensive
preliminary data, unique expertise, innovative technology, cohesive collaborations, and synergistic aims.
项目总结/摘要
非结核分枝杆菌肺病,主要是由于M。鸟类复合体(MAC),是一个日益增长的
在全国范围内,结核病是一个严重的临床问题,在发病率和死亡率方面,目前已超过国内结核病。也是
更难治疗,尽管药物治疗时间更长,结果也更差。在此背景下,NIH发布了一份
通知AI-17-016,要求申请NTM疾病。在这里,我们提出了一个建议,从大学的
弗吉尼亚州,与弗吉尼亚州卫生部和弗吉尼亚理工大学的合作者,
被引用的需求。首先,我们将对我们州所有的MAC分离株进行全基因组测序。
MAC肺病患者辨别复发与再感染以及获得的环境来源。
其次,我们将利用全州范围内的新MAC肺病患者队列,将临床结局与
MAC种类、药物敏感性、血清药物水平和生物膜生物测定。创新包括使用
全州范围流行病学队列,全基因组广泛初步数据的精确分辨率
测序,以辨别物种和混合感染,全面的全州血清药物监测
计划(正如我们已经为结核病所做的那样),以及分子诊断和基因型-表型
相关性总之,对于MAC肺病这一最令人烦恼的临床问题,
初步数据、独特专业知识、创新技术、紧密合作和协同目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ERIC R HOUPT其他文献
ERIC R HOUPT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ERIC R HOUPT', 18)}}的其他基金
Mycobacterial Lung Diseases in Virginia: sequencing and clinical determinants of relapse and outcome
弗吉尼亚分枝杆菌肺病:复发和结果的测序和临床决定因素
- 批准号:
10321219 - 财政年份:2021
- 资助金额:
$ 67.36万 - 项目类别:
Diagnostics and Pharmacotherapy for Severe Forms of TB
严重结核病的诊断和药物治疗
- 批准号:
9127086 - 财政年份:2015
- 资助金额:
$ 67.36万 - 项目类别:
Diagnostics and Pharmacotherapy for Severe Forms of TB
严重结核病的诊断和药物治疗
- 批准号:
8819855 - 财政年份:2015
- 资助金额:
$ 67.36万 - 项目类别:
Genotyping and Pharmacokinetics in the HIV/MDR-TB epidemic of Eastern Siberia
东西伯利亚艾滋病毒/耐多药结核病流行的基因分型和药代动力学
- 批准号:
8793095 - 财政年份:2014
- 资助金额:
$ 67.36万 - 项目类别:
Genotyping and Pharmacokinetics in the HIV/MDR-TB epidemic of Eastern Siberia
东西伯利亚艾滋病毒/耐多药结核病流行的基因分型和药代动力学
- 批准号:
8605359 - 财政年份:2014
- 资助金额:
$ 67.36万 - 项目类别:
Reduced Injectable, Short-course for (E)Xpert MDR-TB [RISE trial]
(E)Xpert 耐多药结核病的短期注射减少 [RISE 试验]
- 批准号:
8732395 - 财政年份:2014
- 资助金额:
$ 67.36万 - 项目类别:
Molecular Diagnostic Tools for Patient Oriented Field Studies in Infectious Disea
用于以患者为导向的传染病现场研究的分子诊断工具
- 批准号:
8580369 - 财政年份:2013
- 资助金额:
$ 67.36万 - 项目类别:
Molecular Diagnostic Tools for Patient Oriented Field Studies in Infectious Diseases
用于以患者为导向的传染病现场研究的分子诊断工具
- 批准号:
10199920 - 财政年份:2013
- 资助金额:
$ 67.36万 - 项目类别:
Molecular Diagnostic Tools for Patient Oriented Field Studies in Infectious Diseases
用于以患者为导向的传染病现场研究的分子诊断工具
- 批准号:
10443710 - 财政年份:2013
- 资助金额:
$ 67.36万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 67.36万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 67.36万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 67.36万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 67.36万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 67.36万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 67.36万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 67.36万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 67.36万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 67.36万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 67.36万 - 项目类别:
Continuing Grant