Mechanisms Mediating Osseointegration of 3D Printed Titanium Constructs
3D 打印钛结构的骨整合调节机制
基本信息
- 批准号:10543521
- 负责人:
- 金额:$ 58.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-07 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAdultAffectAlloysAnimal ModelAnimalsAutologousBiologicalBiological ProductsBiomimetic MaterialsBiomimeticsBone MatrixBone Morphogenetic ProteinsBone TransplantationBone remodelingCell LineCell LineageCellsCellular biologyCephalicCharacteristicsChemicalsChemistryClinicalClinical ResearchCoagulation ProcessComplexCouplingCuesCultured CellsDentalDental InlaysDentistryDenturesDiseaseDistalEffectivenessEndothelial CellsEngineeringEnvironmentEstrogen deficiencyEventExperimental PathologyFamilyFemaleFemurFibrinGenerationsGeometryGoalsHumanImageImmature BoneImmuneImplantImplant-Supported Dental ProsthesisImplantation procedureIn VitroInflammationIntegrinsInterventionLeftMacrophageMature BoneMechanicsMediatingMedicalMesenchymal Stem CellsMetabolic Bone DiseasesMetalsMethodsModelingModificationMolecular BiologyMorphologyNanostructuresOperative Surgical ProceduresOrthopedicsOryctolagus cuniculusOsseointegrationOsteoblastsOsteoclastsOsteogenesisOsteoporosisOutcomePathway interactionsPatientsPharmaceutical PreparationsPhasePhysiologic calcificationPolystyrenesProcessProductionProliferatingPropertyProtocols documentationQuality of lifeRattusReactionRegulationReproducibilityResearchSemaphorinsSex DifferencesShapesSignal TransductionSiteStructureSurfaceSurface PropertiesTechnologyTestingTextureTissuesTitaniumTooth structureTraumaVariantVertebral columnVisionWNT Signaling PathwayWeight-Bearing stateWorkagedaging populationbonebone healthbone losscortical bonedesignexperiencefabricationfunctional restorationhydrophilicityimprovedin vivomalemandibular nervemanufacturematerials sciencemigrationmonocytenanonanoscalenovelosseointegrated implantosteoblast differentiationosteogenicosteoprogenitor cellpharmacologicphysical propertyplanar cell polaritypreclinical studyrecruitresponseside effectskillsstem cellssuccesstissue culturetissue regenerationtissue repairvasculogenesis
项目摘要
This proposal addresses the growing clinical need in dentistry and orthopaedics for materials that enable rapid
osseointegration and earlier loading times for implants in bone that has been compromised by trauma or
disease. 38 million US adults will have no natural teeth by 2020. Implant-supported dentures significantly
improve quality of life in comparison to removable dentures, but many denture patients experience
considerable bone loss, risking exposing the mandibular nerve during surgery and limiting implant placement.
The aging population has an increased need for technologies that provide predictable implant osseointegration
in orthopaedic sites (e.g. spine). Medical treatment for metabolic bone diseases like osteoporosis improve
implant success, but many patients are not treated with these drugs. Osteoinductive agents like BMPs can
improve clinical outcomes, but these technologies are expensive, can have negative side effects, and for some
applications are contra-indicated. Our goal is to exploit the physical surface properties of dental and
orthopaedic implants to generate new bone in patients lacking sufficient supporting bone without relying on
pharmacologic interventions. Our work has shown that the microscale and nanoscale properties of 2D titanium
(Ti) and Ti-alloy surfaces are sufficient to drive osteoblast differentiation of multipotent mesenchymal stem cells
(MSCs) in vitro and increase the rate of new bone formation in vivo in animals and patients, improving
osseointegration and implant stability. Additive manufacturing (AM) makes it possible to design-patient specific
implants, but the complex geometries that are needed make modifications to interior surfaces of 3D constructs
difficult to achieve. To overcome this technology limitation, we will develop our novel magnesio(calcio)thermic
[M(C)T] process for generating osteogenic nanostructure on both exterior and interior surfaces of 3D AM-
derived Ti-6Al-4V implants. We will: (1) Determine the mechanism(s) of the M(C)T process controlling the
surface nanostructure and use this understanding to tailor nanoscale surface features for enhanced osteoblast
differentiation on AM-derived 3D implants; (2) Determine the mechanisms that mediate the differential effects
of surface design features on planar cell polarity and MSC commitment to an osteoblast lineage fate (i.e.,
obligatory change in shape from flattened MSCs, which can migrate, adhere to the implant, and proliferate, to
columnar secretory osteoblasts, which synthesize and mineralize bone matrix); and (3) Assess how changes in
surface design impact bone formation and remodeling in vitro by understanding how MSCs modulate
osteoclast activity and in vivo using aged male and female rats to assess any sex differences, estrogen-
deficient rats as a model of compromised bone health, and rabbit femurs as a model of function under load-
bearing conditions. Our studies take advantage of the investigative team's skills in cell and molecular biology,
experimental pathology, material science, non-destructive testing and mechanical engineering.
该提案解决了牙科和骨科对材料日益增长的临床需求,
骨整合和植入物在骨中的早期加载时间已受到创伤或
疾病到2020年,美国将有3800万成年人没有天然牙齿。种植体支持的义齿显著
与可摘义齿相比,可摘义齿改善了生活质量,但许多义齿患者
大量的骨质流失,在手术过程中有暴露下颌神经的风险,并限制了种植体的放置。
人口老龄化对提供可预测种植体骨整合的技术的需求增加
骨科部位(例如脊柱)。骨质疏松症等代谢性骨病的药物治疗改善
植入成功,但许多患者没有用这些药物治疗。骨诱导剂如BMP可以
改善临床结果,但这些技术是昂贵的,可能有负面的副作用,
应用程序是禁忌。我们的目标是利用牙齿的物理表面特性,
骨科植入物,用于在缺乏足够支撑骨的患者中生成新骨,
药物干预。我们的工作表明,2D钛的微米级和纳米级性质
(Ti)钛合金表面足以驱动多能间充质干细胞的成骨细胞分化
在动物和患者中,在体外培养间充质干细胞(MSC)并增加体内新骨形成的速率,
骨整合和种植体稳定性。增材制造(AM)使设计患者特异性成为可能
植入物,但所需的复杂几何形状需要对3D结构的内表面进行修改
很难实现。为了克服这一技术限制,我们将开发新的镁(钙)热
用于在3D AM的外表面和内表面上产生成骨纳米结构的[M(C)T]方法
衍生Ti-6Al-4V植入物。我们将:(1)确定M(C)T过程控制的机制。
表面纳米结构并使用这种理解来定制用于增强成骨细胞纳米级表面特征
(2)确定介导差异效应的机制
平面细胞极性和MSC向成骨细胞谱系命运的定向的表面设计特征(即,
从扁平的MSC的强制性形状变化,其可以迁移,粘附到植入物上并增殖,
柱状分泌成骨细胞,其合成和矿化骨基质);和(3)评估
表面设计通过理解MSC如何调节体外骨形成和重塑
破骨细胞活性和体内使用老年雄性和雌性大鼠评估任何性别差异,雌激素-
缺陷大鼠作为受损骨健康的模型,兔股骨作为负荷下的功能模型-
轴承条件我们的研究利用了调查小组在细胞和分子生物学方面的技能,
实验病理学、材料科学、无损检测和机械工程。
项目成果
期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Acellular mineralized allogenic block bone graft does not remodel during the 10 weeks following concurrent implant placement in a rabbit femoral model.
- DOI:10.1111/clr.13544
- 发表时间:2020-01
- 期刊:
- 影响因子:4.3
- 作者:Cohen DJ;Scott KM;Kulkarni AN;Wayne JS;Boyan BD;Schwartz Z
- 通讯作者:Schwartz Z
The Biological Basis for Surface-dependent Regulation of Osteogenesis and Implant Osseointegration.
- DOI:10.5435/jaaos-d-21-00523
- 发表时间:2022-07-01
- 期刊:
- 影响因子:3.2
- 作者:Boyan, Barbara D.;Berger, Michael B.;Nelson, Fred R.;Donahue, Henry J.;Schwartz, Zvi
- 通讯作者:Schwartz, Zvi
Bisphosphonates inhibit surface-mediated osteogenesis.
- DOI:10.1002/jbm.a.36944
- 发表时间:2020-08-01
- 期刊:
- 影响因子:0
- 作者:Lotz EM;Lohmann CH;Boyan BD;Schwartz Z
- 通讯作者:Schwartz Z
Growth factors produced by bone marrow stromal cells on nanoroughened titanium-aluminum-vanadium surfaces program distal MSCs into osteoblasts via BMP2 signaling.
- DOI:10.1002/jor.24869
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Berger MB;Bosh KB;Jacobs TW;Joshua Cohen D;Schwartz Z;Boyan BD
- 通讯作者:Boyan BD
Hot isostatic pressure treatment of 3D printed Ti6Al4V alters surface modifications and cellular response.
- DOI:10.1002/jbm.b.34474
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Michael B Berger;Thomas W. Jacobs;B. Boyan;Z. Schwartz
- 通讯作者:Michael B Berger;Thomas W. Jacobs;B. Boyan;Z. Schwartz
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Barbara D. Boyan其他文献
The effect of formocresol on lipids of bovine pulp
- DOI:
10.1016/s0099-2399(86)80223-0 - 发表时间:
1986-01-01 - 期刊:
- 影响因子:
- 作者:
Don M. Ranly;Barbara D. Boyan - 通讯作者:
Barbara D. Boyan
Der Differenzierungsgrad von Chondrozyten und ihre Vorbehandlung mit „platelet-derived-growth-factor“
软骨酶的差异和“血小板衍生生长因子”的处理
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
C. H. Lohmann;Zvi Schwartz;G. G. Niederauer;Barbara D. Boyan - 通讯作者:
Barbara D. Boyan
P6. MSCs grown on micro-nano modified titanium-aluminum-vanadium surfaces generate osteogenic, angiogenic, and immunomodulatory factors.
- DOI:
10.1016/j.spinee.2024.06.027 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
David Joshua Cohen;Christine M Van Duyn;James T Sugar;Paul J. Slosar;Jeremy J Rawlinson;Zvi Schwartz Schwartz;Barbara D. Boyan - 通讯作者:
Barbara D. Boyan
P2. Use of semaphorin 3A for improving osseointegration of titanium implants in type 2 diabetes mellitus rats
- DOI:
10.1016/j.spinee.2021.05.210 - 发表时间:
2021-09-01 - 期刊:
- 影响因子:
- 作者:
Jingyao Deng;David Joshua Cohen;Zvi Schwartz;Barbara D. Boyan - 通讯作者:
Barbara D. Boyan
Local production of active vitamin Dsub3/sub metabolites in breast cancer cells by CYP24A1 and CYP27B1
乳腺癌细胞中由 CYP24A1 和 CYP27B1 产生的活性维生素 D3 代谢物的局部产生
- DOI:
10.1016/j.jsbmb.2023.106331 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:2.500
- 作者:
Cydney Dennis;Jonathan Dillon;David J. Cohen;Matthew S. Halquist;Adam C. Pearcy;Zvi Schwartz;Barbara D. Boyan - 通讯作者:
Barbara D. Boyan
Barbara D. Boyan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Barbara D. Boyan', 18)}}的其他基金
Sustained regulation of hypothalamus-pituitary-ovary hormones with tissue-engineered ovarian constructs as a treatment for osteoporosis in females
利用组织工程卵巢结构持续调节下丘脑-垂体-卵巢激素作为女性骨质疏松症的治疗方法
- 批准号:
10659277 - 财政年份:2023
- 资助金额:
$ 58.33万 - 项目类别:
Building Interdisciplinary Research Careers in Women's Health
建立女性健康领域的跨学科研究职业
- 批准号:
10427815 - 财政年份:2022
- 资助金额:
$ 58.33万 - 项目类别:
Building Interdisciplinary Research Careers in Women's Health
建立女性健康领域的跨学科研究职业
- 批准号:
10651664 - 财政年份:2022
- 资助金额:
$ 58.33万 - 项目类别:
Building Interdisciplinary Research Careers in Women's Health
建立女性健康领域的跨学科研究职业
- 批准号:
10844496 - 财政年份:2022
- 资助金额:
$ 58.33万 - 项目类别:
Building Interdisciplinary Research Careers in Women's Health
建立女性健康领域的跨学科研究职业
- 批准号:
10887264 - 财政年份:2022
- 资助金额:
$ 58.33万 - 项目类别:
Mechanisms Mediating Osseointegration of 3D Printed Titanium Constructs
3D 打印钛结构的骨整合调节机制
- 批准号:
10333283 - 财政年份:2019
- 资助金额:
$ 58.33万 - 项目类别:
Mechanisms Mediating Osseointegration of 3D Printed Titanium Constructs
3D 打印钛结构的骨整合调节机制
- 批准号:
10079471 - 财政年份:2019
- 资助金额:
$ 58.33万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 58.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 58.33万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 58.33万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 58.33万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 58.33万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 58.33万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 58.33万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 58.33万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 58.33万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 58.33万 - 项目类别:
Standard Grant