An artificial intelligence-driven distributed stereotactic radiosurgery strategy for multiple brain metastases management

人工智能驱动的分布式立体定向放射外科治疗多发性脑转移瘤策略

基本信息

  • 批准号:
    10543133
  • 负责人:
  • 金额:
    $ 53.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Brain metastases (BMs) are a life-threatening neurological disease, but current treatment regimens cannot manage multiple (>4) BMs (mBMs) without causing strong adverse effects. Stereotactic radiosurgery (SRS), utilizing potent dose to irradiate BMs and quick dose falloff to spare nearby tissues, has proven to be an effective treatment regimen for limited-number and small-size BMs. However, SRS could not avoid high toxic dose when BMs are multiple, clustered, or adjacent to critical organs. To safe and effectively treat mBMs with SRS requires addressing these urgent needs: 1) to identify the maximum tolerable SRS dose; 2) to study neurocognitive decline and design strategies to preserve patients’ post-treatment quality of life; and 3) to develop and implement high-quality streamlined mBMs SRS treatment and follow-up care. To address mBMs SRS management needs, we aim to develop and implement an artificial intelligence (AI)- driven treatment planning system (TPS) and conduct a therapeutic intervention clinical trial, both dedicated to improve mBMs SRS treatment quality and efficiency. The AI-driven TPS, namely AimBMs, will have three AI- based computational modules, including AI-Segtor for automatic segmentation, AI-Predictor for treatment outcome prediction and AI-Planner for spatiotemporal distributed SRS plan optimization. AimBMs is initially developed based on retrospective data and facilitate the mBMs distributed SRS prospective phase I/II clinical trials, while the clinical trial will provide critical clinical knowledge and evidence as feedback to improve AimBMs performance. The ultimate goal of the project is to translate the AimBMs to routine clinical practice to improve mBMs SRS treatment quality, patients’ post-treatment QoL, and clinical facility workflow. In response to PAR-18-560, we have formed a multidisciplinary collaboration between radiation oncologists and medical physicists to develop a novel AI-driven distributed SRS technology and conduct a cancer-targeted therapeutic intervention for managing mBMs. The project’s innovations include: 1) novel SRS treatment planning technological capability enabled by AI-based auto-segmentation, treatment outcome prediction, and spatiotemporal plan optimization; 2) novel AI learning capability to improve developed AI tools’ performance through the coherent clinical trial. The technology development will support the therapeutic intervention clinical trial, while the clinical trial is designated to improve the developed system performance. This seamlessly integrated development mode ensures the developed system is clinically practical. Upon completion, our newly developed AimBMs will lay a solid foundation for mBMs SRS management and benefit a wide population of patients with BMs. Moreover, the AI-based treatment planning and treatment delivery infrastructure built for mBMs SRS can be transferred to other tumor sites to generate an even broader clinical impact.
项目摘要 脑转移瘤(BM)是一种危及生命的神经系统疾病,但目前的治疗方案不能 管理多个(>4个)BM(mBM),而不会造成强烈的不良影响。立体定向放射外科(SRS), 利用有效剂量照射BM和快速剂量下降以节省附近组织,已被证明是有效的 有限数量和小尺寸BM的治疗方案。但是,SRS不能避免高毒性剂量, BM为多个、成簇或邻近关键器官。为了安全有效地使用SRS治疗mBM,需要 解决这些迫切需要:1)确定最大耐受SRS剂量; 2)研究神经认知 下降和设计策略,以保持患者的治疗后生活质量;和3)制定和实施 高质量的简化mBM SRS治疗和后续护理。 为了满足mBM SRS管理需求,我们的目标是开发和实施人工智能(AI)- 驱动的治疗计划系统(TPS),并进行治疗干预临床试验,都致力于 提高mBM SRS治疗质量和效率。AI驱动的TPS,即AimBM,将有三个AI- 基于计算模块,包括用于自动分割的AI-Segtor,用于治疗的AI-Predictor 结果预测和用于时空分布式SRS计划优化的AI-Planner。AimBMs最初是 基于回顾性数据开发,并促进mBM分发SRS前瞻性I/II期临床 临床试验将提供关键的临床知识和证据作为反馈,以改善AimBM 性能该项目的最终目标是将AimBM转化为常规临床实践, mBM SRS治疗质量、患者治疗后QoL和临床机构工作流程。 针对PAR-18-560,我们在放射肿瘤学家和 医学物理学家开发一种新的AI驱动的分布式SRS技术,并进行针对癌症的 用于管理mBM的治疗干预。该项目的创新包括:1)新颖的SRS治疗计划 通过基于AI的自动分割、治疗结果预测和 时空规划优化; 2)新的AI学习能力,以提高开发的AI工具的性能 通过连贯的临床试验该技术的发展将支持临床治疗干预 试验,而临床试验被指定为提高开发的系统性能。这天衣无缝 集成开发模式保证了所开发系统的临床实用性。完成后,我们的新 开发的AimBM将为mBM SRS管理奠定坚实的基础, BM患者。此外,基于人工智能的治疗规划和治疗提供基础设施, mBM SRS可以转移到其他肿瘤部位,以产生更广泛的临床影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xuejun Gu其他文献

Xuejun Gu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xuejun Gu', 18)}}的其他基金

An artificial intelligence-driven distributed stereotactic radiosurgery strategy for multiple brain metastases management
人工智能驱动的分布式立体定向放射外科治疗多发性脑转移瘤策略
  • 批准号:
    10352207
  • 财政年份:
    2019
  • 资助金额:
    $ 53.88万
  • 项目类别:
An artificial intelligence-driven distributed stereotactic radiosurgery strategy for multiple brain metastases management
人工智能驱动的分布式立体定向放射外科治疗多发性脑转移瘤策略
  • 批准号:
    10083723
  • 财政年份:
    2019
  • 资助金额:
    $ 53.88万
  • 项目类别:
Real-time Image Registration for 3-D Ultrasound Guided Partial Breast Irradiation
3D 超声引导局部乳房照射的实时图像配准
  • 批准号:
    8004630
  • 财政年份:
    2010
  • 资助金额:
    $ 53.88万
  • 项目类别:
Real-time Image Registration for 3-D Ultrasound Guided Partial Breast Irradiation
3D 超声引导局部乳房照射的实时图像配准
  • 批准号:
    8194011
  • 财政年份:
    2010
  • 资助金额:
    $ 53.88万
  • 项目类别:

相似海外基金

Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
  • 批准号:
    10591918
  • 财政年份:
    2023
  • 资助金额:
    $ 53.88万
  • 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
  • 批准号:
    23K15383
  • 财政年份:
    2023
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
  • 批准号:
    23H03556
  • 财政年份:
    2023
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
  • 批准号:
    23K17212
  • 财政年份:
    2023
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
  • 批准号:
    22H03519
  • 财政年份:
    2022
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
  • 批准号:
    563657-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
  • 批准号:
    10521849
  • 财政年份:
    2022
  • 资助金额:
    $ 53.88万
  • 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
  • 批准号:
    10671022
  • 财政年份:
    2022
  • 资助金额:
    $ 53.88万
  • 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
  • 批准号:
    10670918
  • 财政年份:
    2022
  • 资助金额:
    $ 53.88万
  • 项目类别:
Adverse Effects of Using Laser Diagnostics in High-Speed Compressible Flows
在高速可压缩流中使用激光诊断的不利影响
  • 批准号:
    RGPIN-2018-04753
  • 财政年份:
    2022
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了