Real-time Image Registration for 3-D Ultrasound Guided Partial Breast Irradiation
3D 超声引导局部乳房照射的实时图像配准
基本信息
- 批准号:8004630
- 负责人:
- 金额:$ 4.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-30 至 2013-09-29
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAnatomyBreastCancer PatientData SetDevelopmentDoseImageImaging TechniquesInstitutesLocationMalignant NeoplasmsMeasurableMethodologyMethodsModelingNormal tissue morphologyPatient CarePatientsRadiation therapySeriesStagingSystemTestingTherapeuticTimeTissuesUltrasonographyWomanWorkX-Ray Computed Tomographybasebreast cancer diagnosisbreast lumpectomycomputerized toolscostdigitalimage registrationimprovedirradiationmalignant breast neoplasmpublic health relevancesuccesstooltreatment planning
项目摘要
DESCRIPTION (provided by applicant): Breast cancer is the most common malignancy of women in the USA. It is estimated that 225,000 new breast cancers are diagnosed every year. External beam partial breast irradiation (EB-PBI) is a non-invasive, time- efficient and cost-effective radiation therapy treatment paradigm for stage I and II breast cancer. However, the treatment quality of EB-PBI suffers from inaccurate target location due to the misrepresentation of target volume during treatment planning and lumpectomy cavity and breast deformation during the treatment course. Onboard treatment breast image is currently available by integer a volumetric breast ultrasound scanner (VBUS) into the existing EB-PBI in our institute. The object of this project is to develop a real-time image registration tool to automatically register the planning computed tomography (CT) image to the planning or on- treatment 3-D ultrasound breast image. We plan to test the hypothesis that 1) the implementation of the real- time deformable image registration (DIR) algorithm will enable us to model the breast and lumpectomy cavity deformation as treatment progresses and 2) this new developed computational tool will permit us to improve the precision of delivery dose and sparing of adjunct normal tissue by optimizing the treatment plan in accordant with up-to-date patient anatomy. Our specific aims and measurable objectives are: 1) to develop a GPU-based ultrafast image registration tool for ultrasound and CT images registration; 2) to validate and assess the developed registration tool by sequentially testing on series of digital phantoms, experimental phantoms, and real patients' data sets; 3) to demonstrate that development of the real-time image registration tool will enable precise target location and optimal dose distribution. The success of the proposed project will provide a method that utilizes on-board treatment ultrasound images to locate treatment target volume in an efficient and accurate way. Consequently it will enhance the therapeutic quality of breast cancer patient care by improving the precision of treatment delivery while sparing adjacent healthy tissues. Additionally, the general methodology developed in this work has a broad applicability to the radiation therapy of a variety of cancers other than breast cancer.
PUBLIC HEALTH RELEVANCE: This project is to innovatively incorporate the 3-D ultrasound breast imaging technique into the online adaptive breast radiotherapy system through developing a real-time image registration computational tool. This online adaptive breast radiotherapy paradigm will substantially improve the therapeutic quality of breast cancer patient care by precisely locating target volume and optimally compensating for breast anatomy changes.
描述(由申请人提供):乳腺癌是美国女性最常见的恶性肿瘤。据估计,每年诊断出225 000例新的乳腺癌。外射束部分乳腺照射(EB-PBI)是用于I期和II期乳腺癌的非侵入性、时间有效且成本有效的放射疗法治疗范例。然而,EB-PBI的治疗质量受到不准确的目标定位,由于在治疗计划和乳房肿瘤切除术腔和乳房变形过程中的目标体积的误报。机载治疗乳腺图像目前可通过将体积乳腺超声扫描仪(VBUS)整合到我们研究所现有的EB-PBI中获得。本项目的目标是开发一个实时图像配准工具,以自动将计划计算机断层扫描(CT)图像配准到计划或治疗中的3-D超声乳腺图像。我们计划测试以下假设:1)实施真实的实时可变形图像配准(EML)算法将使我们能够随着治疗进展对乳房和肿块切除术腔体变形进行建模,2)这种新开发的计算工具将使我们能够根据最新的患者解剖结构优化治疗计划,从而提高输送剂量的精度并保留附属正常组织。我们的具体目标和可衡量的目标是:1)开发一种基于GPU的超快图像配准工具,用于超声和CT图像配准; 2)通过对一系列数字体模、实验体模和真实的患者数据集进行顺序测试来验证和评估所开发的配准工具; 3)证明实时图像配准工具的开发将实现精确的靶定位和最佳剂量分布。所提出的项目的成功将提供一种方法,利用车载治疗超声图像,以有效和准确的方式定位治疗靶体积。因此,它将提高乳腺癌患者护理的治疗质量,通过提高治疗输送的精度,同时保留相邻的健康组织。此外,在这项工作中开发的一般方法具有广泛的适用性,以放射治疗的各种癌症以外的乳腺癌。
公共卫生相关性:本计画创新性地将三维超音波乳房影像技术整合于线上乳房适形放射治疗系统中,并开发即时影像配准计算工具。这种在线自适应乳腺放射治疗模式将通过精确定位靶体积和最佳补偿乳腺解剖结构变化,大大提高乳腺癌患者护理的治疗质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuejun Gu其他文献
Xuejun Gu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuejun Gu', 18)}}的其他基金
An artificial intelligence-driven distributed stereotactic radiosurgery strategy for multiple brain metastases management
人工智能驱动的分布式立体定向放射外科治疗多发性脑转移瘤策略
- 批准号:
10352207 - 财政年份:2019
- 资助金额:
$ 4.56万 - 项目类别:
An artificial intelligence-driven distributed stereotactic radiosurgery strategy for multiple brain metastases management
人工智能驱动的分布式立体定向放射外科治疗多发性脑转移瘤策略
- 批准号:
10083723 - 财政年份:2019
- 资助金额:
$ 4.56万 - 项目类别:
An artificial intelligence-driven distributed stereotactic radiosurgery strategy for multiple brain metastases management
人工智能驱动的分布式立体定向放射外科治疗多发性脑转移瘤策略
- 批准号:
10543133 - 财政年份:2019
- 资助金额:
$ 4.56万 - 项目类别:
Real-time Image Registration for 3-D Ultrasound Guided Partial Breast Irradiation
3D 超声引导局部乳房照射的实时图像配准
- 批准号:
8194011 - 财政年份:2010
- 资助金额:
$ 4.56万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 4.56万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 4.56万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 4.56万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 4.56万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 4.56万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 4.56万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 4.56万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 4.56万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 4.56万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 4.56万 - 项目类别:
Continuing Grant