NMRFx: An Integrated software suite for macromolecular NMR analysis
NMRFx:用于大分子 NMR 分析的集成软件套件
基本信息
- 批准号:10543487
- 负责人:
- 金额:$ 32.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAlgorithmsArchitectureAreaChemicalsCollectionComputer AnalysisComputer softwareCryoelectron MicroscopyDataData AnalysesDevelopmentDiseaseDocumentationGoalsHarvestHealthHumanJavaKnowledgeLibrariesLigand BindingLinuxMachine LearningMethodsModernizationMolecularMolecular StructureNMR SpectroscopyNamesNoiseNuclear Magnetic ResonanceNucleic AcidsPerformancePopulationPositioning AttributePrincipal InvestigatorProcessProgramming LanguagesProtein AnalysisProteinsProtocols documentationResearchResearch PersonnelRunningSchemeScienceScientistSource CodeSpecificitySpeedStructureTechniquesTherapeuticTimeTranslatingVisualizationX-Ray Crystallographybiological researchcloud basedcloud platformcomputerized data processingcomputerized toolscomputing resourcesdata exchangedata standardsdeep learningdeep learning algorithmdesignexperiencegraphical user interfacehuman diseaseinsightinterestmagnetic fieldmolecular dynamicsnew technologynovel strategiesopen sourceprogramsrapid techniquesignal processingstructural biologysymposiumtime usetoolusabilityvirtual machine
项目摘要
Knowing the structure, dynamics and ligand binding specificity of proteins and nucleic acids is essential to
understanding the mechanisms of human disease and to the optimal design of molecules that can intervene
therapeutically in disease processes. Nuclear Magnetic Resonance (NMR) Spectroscopy is one of the most
versatile techniques for obtaining this molecular information. This tremendous value of NMR in biomedical
science is only realized through the application of powerful computational tools. Our goal in this project is to
continue the development of, and add powerful new features to, an integrated software application for the
computational analysis of NMR data. Having this effective software, NMRFx, for NMR is especially critical as
we realize that deep insight into macromolecular structure and function comes not from a single technique like
NMR, but from the complementary information from various techniques including NMR, X-ray crystallography,
and Cryo-electron microscopy. Scientists are no longer seeing these techniques as specialized techniques
usable by only domain experts, but as a collection of techniques that can and should be applied together.
Without this NMRFx software, researchers must otherwise use a variety of tools from different labs that have
different programming languages, scripting tools, naming conventions, graphical interfaces, documentation
styles etc. The NMRFx software that is the subject of this project integrates signal processing, data analysis,
visualization and macromolecular structure calculations based on NMR data. In the current project this
software will be enhanced with the addition of an integrated deep learning library that will allow new types of
data analyses using these new tools that are making major advances in scientific research. The performance
of the software will be dramatically enhanced by the addition of a software library that allows computations to
be dispatched to high-performance hardware like GPUs (graphical processing units) and FPGAs (Field
Programmable Gate Arrays). This performance enhancement will allow much faster computations and allow
use of algorithms that were previously too slow to use in interactive analyses. We will also complete the
implementation of the remaining features necessary for the full analysis of NMR data. We propose that by
providing new and experienced users with an enhanced version of our software application that has a common
installation protocol, interface style, data structures, and overall design, we can substantially lower barriers to
the use of NMR. NMRFx is making the use of NMR techniques more accessible to a wider population of
researchers. The software, including the addition of the deep learning and acceleration libraries, will increase
the contributions of NMR in a broad range of biological research areas that impact on human health.
了解蛋白质和核酸的结构、动力学和配体结合的特异性是至关重要的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce A Johnson其他文献
Bruce A Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce A Johnson', 18)}}的其他基金
NMRFx: An Integrated software suite for macromolecular NMR analysis
NMRFx:用于大分子 NMR 分析的集成软件套件
- 批准号:
9977225 - 财政年份:2017
- 资助金额:
$ 32.34万 - 项目类别:
NMRFx: An Integrated software suite for macromolecular NMR analysis
NMRFx:用于大分子 NMR 分析的集成软件套件
- 批准号:
10367499 - 财政年份:2017
- 资助金额:
$ 32.34万 - 项目类别:
NMRFx: An Integrated software suite for macromolecular NMR analysis
NMRFx:用于大分子 NMR 分析的集成软件套件
- 批准号:
9447428 - 财政年份:2017
- 资助金额:
$ 32.34万 - 项目类别:
Exxact Computer System for Deep Learning, Molecular Dynamics and NMR Processing
用于深度学习、分子动力学和核磁共振处理的 Exxact 计算机系统
- 批准号:
10582121 - 财政年份:2017
- 资助金额:
$ 32.34万 - 项目类别:
Continued Development and Maintenance of NMRView
NMRView 的持续开发和维护
- 批准号:
6984551 - 财政年份:2005
- 资助金额:
$ 32.34万 - 项目类别:
Continued Development and Maintenance of NMRView
NMRView 的持续开发和维护
- 批准号:
7484133 - 财政年份:2005
- 资助金额:
$ 32.34万 - 项目类别:
Continued Development and Maintenance of NMRView
NMRView 的持续开发和维护
- 批准号:
7114354 - 财政年份:2005
- 资助金额:
$ 32.34万 - 项目类别:
Continued Development and Maintenance of NMRView
NMRView 的持续开发和维护
- 批准号:
7280283 - 财政年份:2005
- 资助金额:
$ 32.34万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 32.34万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 32.34万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 32.34万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2020
- 资助金额:
$ 32.34万 - 项目类别:
Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 32.34万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2019
- 资助金额:
$ 32.34万 - 项目类别:
Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
- 批准号:
541812-2019 - 财政年份:2019
- 资助金额:
$ 32.34万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 32.34万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759796 - 财政年份:2018
- 资助金额:
$ 32.34万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759807 - 财政年份:2018
- 资助金额:
$ 32.34万 - 项目类别:
Standard Grant