A Gata456 Pipeline of Discovery
Gata456 发现管道
基本信息
- 批准号:10543782
- 负责人:
- 金额:$ 81.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-10 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAllelesAnimalsAreaAtrial Heart Septal DefectsBiological ModelsBiologyCardiacCardiomyopathiesCardiovascular DiseasesCell TherapyCellsCodeDevelopmentDifferentiation AntigensDisease modelDisparateEndocardiumEpicardiumEpigenetic ProcessGATA4 geneGenerationsGenesGeneticGoalsGrowthHeartHeart DiseasesHumanHypertrophyIndividualLeadLifeLocationMesodermMorphogenesisMutationMyocardialMyocardiumNatural regenerationOrganPhenotypePositioning AttributeResearch PersonnelSpecific qualifier valueSyndromeTetralogy of FallotTherapeuticTissuesTubeVentricular Septal DefectsZebrafishbicuspid aortic valvecardiogenesiscardioprotectioncellular developmentfamilial dilated cardiomyopathygain of functionhuman embryonic stem cellhuman pluripotent stem cellloss of functionnovelprogenitorprogramstherapeutic targettranscription factor
项目摘要
Three highly related genes, Gata4, Gata5, and Gata6 (referred to here as Gata456) regulate essentially every
aspect of cardiac biology, from generation of precardiac mesoderm, specification and differentiation of
endocardial, epicardial, and myocardial progenitors, heart tube formation, growth and morphogenesis,
septation and valve formation, cardioprotection and hypertrophy, and regeneration. How the three genes
regulate the spatial, temporal, and tissue-specific genetic and epigenetic networks that underlie all of these
disparate programs is poorly understood. Furthermore, mutations in each of the genes have individually been
associated with human cardiomyopathies, including atrial and ventricular septal defects, tetralogy of Fallot,
bicuspid aortic valve syndrome, and familial dilated cardiomyopathy. Other transcription factor genes, and
some terminal differentiation markers are known to be regulated by Gata456, but a major gap in understanding
is the identify of the key target genes that control intermediary functions such as lineage specification, growth,
morphogenesis, and cardio-protection. We propose a new program as a “Pipeline of Discovery” to identify
these downstream genes and probe their function in cardiogenesis and cardiac biology. The overall goal is to
define the function of each Gata456 gene throughout development and adult life in various cardiac tissues
including endocardium, myocardium, and epicardium. We seek to break the code for how the relative timing
and location of expression for each gene impacts cell fate and survival, and organ morphogenesis and
function. Complementary model systems exploit specific advantages and resolve species-specific distinctions:
the zebrafish for understanding cardiogenesis including morphogenesis, and human pluripotent stem cells for
understanding human cell identity and disease modeling. We have compiled a “toolbox” of zebrafish and hESC
lines and an expert team of investigators to facilitate a comprehensive analysis of gain-and loss-of-function
phenotypes, with a strong track record for such analyses and discovery of novel downstream targets. A
breakthrough is needed to understand how Gata456 controls all the various aspects of cardiogenesis. We are
finally in a position to define this code, by a systematic manipulation of each factor in different developmental
and tissue contexts, leading to discovery of specific key downstream target genes that carry out these diverse
functions. This project will not directly develop therapeutics for cardiac disease, but it will likely enhance
development of cellular therapies. Chiefly, it will break ground beyond current descriptions of regulatory
networks in two areas: 1) Defining the impact for loss or gain of individual Gata456 alleles at specific
developmental stages and in specific tissues to precisely define functions in developing animals (zebrafish)
and human cells (derived from human pluripotent cells). 2) Identifying the key downstream Gata456 target
genes that are responsible for stage and tissue-specific functions, recognizing these as “lead hit” therapeutic
targets for treating cardiac disease.
!
三个高度相关的基因,Gata4, Gata5和Gata6(这里称为Gata456)基本上控制着每一种基因
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cardiovascular Small Heat Shock Protein HSPB7 Is a Kinetically Privileged Reactive Electrophilic Species (RES) Sensor.
心血管小热休克蛋白 HSPB7 是一种动力学特权反应亲电物质 (RES) 传感器。
- DOI:10.1021/acschembio.7b00925
- 发表时间:2018
- 期刊:
- 影响因子:4
- 作者:Surya,SanjnaL;Long,MarcusJC;Urul,DanielA;Zhao,Yi;Mercer,EmilyJ;EIsaid,IslamM;Evans,Todd;Aye,Yimon
- 通讯作者:Aye,Yimon
Cardiomyocytes recruit monocytes upon SARS-CoV-2 infection by secreting CCL2.
- DOI:10.1016/j.stemcr.2021.07.012
- 发表时间:2021-09-14
- 期刊:
- 影响因子:5.9
- 作者:Yang L;Nilsson-Payant BE;Han Y;Jaffré F;Zhu J;Wang P;Zhang T;Redmond D;Houghton S;Møller R;Hoagland D;Carrau L;Horiuchi S;Goff M;Lim JK;Bram Y;Richardson C;Chandar V;Borczuk A;Huang Y;Xiang J;Ho DD;Schwartz RE;tenOever BR;Evans T;Chen S
- 通讯作者:Chen S
Tet Proteins Regulate Neutrophil Granulation in Zebrafish through Demethylation of socs3b mRNA.
- DOI:10.1016/j.celrep.2020.108632
- 发表时间:2021-01-12
- 期刊:
- 影响因子:8.8
- 作者:Banks KM;Lan Y;Evans T
- 通讯作者:Evans T
Epigenetic Regulation of Cardiac Development and Disease through DNA Methylation.
通过 DNA 甲基化对心脏发育和疾病进行表观遗传调控。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Lan,Yahui;Evans,Todd
- 通讯作者:Evans,Todd
SARS-CoV-2 Infection Induces Ferroptosis of Sinoatrial Node Pacemaker Cells.
- DOI:10.1161/circresaha.121.320518
- 发表时间:2022-04
- 期刊:
- 影响因子:20.1
- 作者:Han Y;Zhu J;Yang L;Nilsson-Payant BE;Hurtado R;Lacko LA;Sun X;Gade AR;Higgins CA;Sisso WJ;Dong X;Wang M;Chen Z;Ho DD;Pitt GS;Schwartz RE;tenOever BR;Evans T;Chen S
- 通讯作者:Chen S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Todd R Evans其他文献
Todd R Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Todd R Evans', 18)}}的其他基金
Methods for detection of dynamic intracellular signals in single adult spermatogonial stem cells
单个成体精原干细胞动态细胞内信号的检测方法
- 批准号:
10666116 - 财政年份:2023
- 资助金额:
$ 81.07万 - 项目类别:
Regulation of DNA methylation by TETs and QSER1
TET 和 QSER1 对 DNA 甲基化的调节
- 批准号:
10585325 - 财政年份:2022
- 资助金额:
$ 81.07万 - 项目类别:
Regulation of DNA methylation by TETs and QSER1
TET 和 QSER1 对 DNA 甲基化的调节
- 批准号:
10709595 - 财政年份:2022
- 资助金额:
$ 81.07万 - 项目类别:
Negative feedback regulation of growth factor signaling in adult spermatogonial stem cells
成体精原干细胞生长因子信号传导的负反馈调节
- 批准号:
10570919 - 财政年份:2021
- 资助金额:
$ 81.07万 - 项目类别:
A molecular pathway controlling cardiomyocyte specification.
控制心肌细胞规格的分子途径。
- 批准号:
8975788 - 财政年份:2011
- 资助金额:
$ 81.07万 - 项目类别:
A molecular pathway controlling cardiomyocyte specification.
控制心肌细胞规格的分子途径。
- 批准号:
8388798 - 财政年份:2011
- 资助金额:
$ 81.07万 - 项目类别:
A molecular pathway controlling cardiomyocyte specification.
控制心肌细胞规格的分子途径。
- 批准号:
8219248 - 财政年份:2011
- 资助金额:
$ 81.07万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 81.07万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 81.07万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 81.07万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 81.07万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 81.07万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 81.07万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 81.07万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 81.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 81.07万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 81.07万 - 项目类别: