Targeting aging genes and pathways to promote optic nerve regeneration
针对衰老基因和途径促进视神经再生
基本信息
- 批准号:10547815
- 负责人:
- 金额:$ 40.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAgingAxonBioinformaticsBiomedical ResearchBlood VesselsBrainCaenorhabditis elegansCatalytic DomainCell AgingCellsCentral Nervous SystemChromatinChromosome FragilityConsensusCorticospinal TractsCytoskeletonDNA RepairDataDevelopmentEnzymesEpigenetic ProcessEvolutionFOXO3A geneFRAP1 geneFailureGenesGenetic TechniquesGenetic TranscriptionGenomic InstabilityHeterochromatinHistonesIGF-1 Signaling PathwayInsulinInsulin-Like Growth Factor IKnock-outLongevityLysineMediatingMethylationMolecularMolecular TargetMyosin Type IINatural regenerationNerve RegenerationNeurodegenerative DisordersNeuronsNoiseNonmuscle Myosin Type IIANutrientOptic NerveOptic Nerve InjuriesPIK3CG genePathway interactionsProcessProductionProtocols documentationPublishingRNA-Directed DNA PolymeraseRegenerative capacityRegulationRegulator GenesRegulatory PathwayRejuvenationRetinal Ganglion CellsRoleSIRT1 geneSOX11 geneSTK11 geneSensorySignal TransductionSpinal cord injuryTP53 geneTelomeraseTraumatic Brain Injuryage effectaging geneaxon growthaxon injuryaxon regenerationc-myc Genescell regenerationdesigner receptors exclusively activated by designer drugsdetection of nutrientexperimental studygene repressiongenetic manipulationhistone methylationhuman diseasein vivo regenerationinduced pluripotent stem cellinhibitorinnovationinsightneuralnoveloptic nerve regenerationoverexpressionscreeningsensorspinal cord regenerationtelomeretranscription factortranscriptome sequencingtranscriptomics
项目摘要
Summary
To date, targeting the genes regulating intrinsic axon growth ability have produced by far the most promising
results in optic nerve regeneration. Recent studies, including ours, have provided strong evidence that neuronal
aging might be a key converging process underlying the loss of intrinsic axon growth ability of CNS neurons.
Indeed, many genes that act to regulate axon regeneration are also hallmark genes of aging (genomic instability,
telomere attrition, epigenetic alteration, and nutrient sensing, etc.). First, recent studies and our preliminary
results showed that c-Myc and p53, two well-known genes involved in DNA repair and genomic instability during
aging, act to support optic nerve regeneration. Second, our preliminary study showed that telomerase reverse
transcriptase (TERT) was necessary for sensory axon regeneration in vivo. Third, aging is often associated with
decreased methylation of histone 3 at lysine 27 (H3K27) and increased methylation of H3K4, resulting in reduced
amount of heterochromatin. In support, the level of H3K27 demethylase UTX increases during aging and
knocking out UTX in c. elegans promotes longevity. Our unpublished study showed that knocking out UTX and
its targeted gene, Magi3, in RGCs drastically promoted optic nerve regeneration. Fourth, the insulin and IGF-1
signaling (IIS) pathways, the key regulators of nutrient sensing, are the most conserved aging controlling
pathway in evolution. IGF-1 and many IIS downstream targets, such as Pten/PI3K, Akt, and mTor, are all
important regulators of optic nerve regeneration. Our published study and a recent study have shown that Sirt1
and LKB1, two important nutrient sensors, function to regulate sensory axon and spinal cord regeneration,
respectively. Foxo3, another key target of Akt signaling, has recently been shown to promote vascular cell
regeneration through Sirt1. Lastly, recent findings indicated that cellular reprogramming process can reverse
aging and rejuvenate the cells. Importantly, manipulations of several reprogramming factors, such as KLF4 and
Lin28, have been shown to promote optic nerve regeneration. Therefore, we hypothesize that aging regulatory
genes/pathways can be manipulated to promote optic nerve regeneration through rejuvenation of mature CNS
neurons. In Aim 1, we will determine if manipulation of miR-138/Sirt1, TERT, and Foxo3 in RGCs can promote
optic nerve regeneration. In Aim 2, we will first determine if combination of these aging genes with myosin II
knockout or enhanced neural activity would have synergistic effects on regeneration. We will then use RNA-seq
and ATAC-seq of purified RGCs to explore how these aging genes regulate optic nerve regeneration. In Aim 3, by
performing RNA-seq and ATAC-seq of purified RGCs at different developing, maturation, and aging stages, we
will first use advanced integrative bioinformatics analyses to identify top candidate aging genes and their
associated transcription factors, both of which act to orchestrate RGCs aging. We will then perform functional
screening experiments to determine their roles in regulation of axon growth and optic nerve regeneration.
摘要
到目前为止,靶向调节内在轴突生长能力的基因已经产生了到目前为止最有希望的
导致视神经再生。最近的研究,包括我们的研究,提供了强有力的证据表明,神经元
衰老可能是中枢神经系统神经元内源性轴突生长能力丧失的关键汇聚过程。
事实上,许多调节轴突再生的基因也是衰老的标志基因(基因组不稳定,
端粒磨损、表观遗传学改变和营养感知等)。第一,近期的研究和我们的初步研究
结果表明,c-Myc和P53这两个参与DNA修复和基因组不稳定的基因在
老化,支持视神经再生。第二,我们的初步研究表明,端粒酶逆转
转录酶(TERT)是体内感觉神经轴突再生所必需的。第三,衰老往往与
组蛋白3赖氨酸27(H3K27)的甲基化减少,H3K4的甲基化增加,导致
异染色质的量。在支持方面,H3K27脱甲基酶UTX的水平在衰老和
剔除线虫中的UTX可以延长寿命。我们未发表的研究表明,敲除UTX和
其靶向基因MAGI3在视网膜节细胞中极大地促进了视神经再生。第四,胰岛素和IGF-1
信号通路(IIS)是营养感知的关键调节器,是最保守的衰老控制途径
进化中的路径。IGF-1和许多IIS下游目标,如Pten/PI3K、Akt和mTOR,都是
视神经再生的重要调节因子。我们发表的研究和最近的一项研究表明,Sirt1
和LKB1,两个重要的营养感受器,调节感觉神经轴突和脊髓再生,
分别进行了分析。FOXO_3,Akt信号的另一个关键靶点,最近被证明促进血管细胞
通过Sirt1再生。最后,最近的发现表明,细胞重新编程过程可以逆转
使细胞老化和恢复活力。重要的是,几个重新编程因素的操作,如KLF4和
LIN28,已被证明可以促进视神经再生。因此,我们假设老龄化的监管机构
基因/通路可以通过成熟中枢神经系统的再生来促进视神经再生
神经元。在目标1中,我们将确定在RGC中操纵miR-138/Sirt1、TERT和Foxo3是否可以促进
视神经再生。在目标2中,我们将首先确定这些衰老基因是否与肌球蛋白II结合
基因敲除或增强的神经活性将对再生产生协同效应。然后我们将使用RNA-seq
并对纯化的视网膜节细胞进行ATAC-SEQ,以探索这些老化基因如何调控视神经再生。在目标3中,由
对不同发育、成熟和老化阶段的视网膜神经节细胞进行rna-seq和atac-seq检测。
将首先使用先进的综合生物信息学分析来确定最佳候选衰老基因及其
相关的转录因子,两者都起到协调视网膜节细胞衰老的作用。然后我们将执行功能
筛选实验以确定它们在调节轴突生长和视神经再生中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mei Wan其他文献
Mei Wan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mei Wan', 18)}}的其他基金
Senescence of Pre-Osteoclasts in Non-Traumatic OA
非创伤性骨关节炎中前破骨细胞的衰老
- 批准号:
10090198 - 财政年份:2021
- 资助金额:
$ 40.94万 - 项目类别:
Identifying A Skeleton-Derived Factor for Vascular Aging
识别血管老化的骨骼衍生因子
- 批准号:
10544756 - 财政年份:2021
- 资助金额:
$ 40.94万 - 项目类别:
Senescence of Pre-Osteoclasts in Non-Traumatic OA
非创伤性骨关节炎中前破骨细胞的衰老
- 批准号:
10326804 - 财政年份:2021
- 资助金额:
$ 40.94万 - 项目类别:
Identifying A Skeleton-Derived Factor for Vascular Aging
识别血管老化的骨骼衍生因子
- 批准号:
10380873 - 财政年份:2021
- 资助金额:
$ 40.94万 - 项目类别:
Identifying A Skeleton-Derived Factor for Vascular Aging
识别血管老化的骨骼衍生因子
- 批准号:
10202909 - 财政年份:2021
- 资助金额:
$ 40.94万 - 项目类别:
Senescence of Pre-Osteoclasts in Non-Traumatic OA
非创伤性骨关节炎中前破骨细胞的衰老
- 批准号:
10556420 - 财政年份:2021
- 资助金额:
$ 40.94万 - 项目类别:
Role of Cellular Senescence in the Bone-Brain Interplay
细胞衰老在骨脑相互作用中的作用
- 批准号:
10417206 - 财政年份:2020
- 资助金额:
$ 40.94万 - 项目类别:
Role of Cellular Senescence in the Bone-Brain Interplay
细胞衰老在骨脑相互作用中的作用
- 批准号:
10634546 - 财政年份:2020
- 资助金额:
$ 40.94万 - 项目类别:
Targeting aging genes and pathways to promote optic nerve regeneration
针对衰老基因和途径促进视神经再生
- 批准号:
10326837 - 财政年份:2020
- 资助金额:
$ 40.94万 - 项目类别:
Role of Cellular Senescence in the Bone-Brain Interplay
细胞衰老在骨脑相互作用中的作用
- 批准号:
10041954 - 财政年份:2020
- 资助金额:
$ 40.94万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 40.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 40.94万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 40.94万 - 项目类别:
Collaborative R&D
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 40.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 40.94万 - 项目类别:
Operating Grants
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 40.94万 - 项目类别:
Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 40.94万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 40.94万 - 项目类别:
Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
- 批准号:
23K20355 - 财政年份:2024
- 资助金额:
$ 40.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
- 批准号:
23K24782 - 财政年份:2024
- 资助金额:
$ 40.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




