Electrophysiological Biomarkers to Optimize DBS for Depression

电生理生物标志物优化 DBS 治疗抑郁症

基本信息

项目摘要

PROJECT SUMMARY Deep brain stimulation (DBS) of the subcallosal cingulate (SCC) white matter is an emerging new treatment strategy for treatment resistant depression (TRD) with published studies demonstrating sustained long-term antidepressant effects in 40-60% of implanted patients. Converging evidence from positron emission tomography (PET), electroencephalography (EEG) and diffusion tractography (DTI) strongly suggests that DBS mediates its clinical benefits by direct modulation of the SCC--a key hub in an aberrant neural circuit. Despite encouraging sustained long-term effects in this notoriously difficult to treat patient population, randomized controls trials of SCC DBS and other DBS targets for TRD are now on hold as initial results failed to meet predefined clinical endpoints. While this proposal cannot address those failures directly, a clear necessary next step for effective future testing and eventual dissemination of this treatment is the need to develop brain-based biomarkers to guide lead placement and to titrate stimulation parameters during ongoing care. In the absence of such biomarkers to guide DBS use, there will continue to be variability in the implementation of clinical procedures during testing, leading to ambiguous and possibly misleading trial outcomes, and subsequent abandonment of a potentially useful treatment. To overcome these limitations, we propose to develop and test objective methods for reliable device configuration in individuals by optimizing DBS-SCC treatment with respect to human functional anatomy and key electrophysiological variables. We will leverage the capabilities of a novel bi-directional neuromodulation system (Medtronic RC+S) that allows live streaming of oscillatory activity at the site of stimulation to define novel control strategies to guide programming decisions for DBS delivery. Ongoing measurements of SCC local field potentials (LFPs) will be combined with electroencephalography (EEG) and event related potential studies (ERP) performed as part of an experimental clinical trial of subcallosal cingulate DBS for TRD to identify an oscillatory signal that (1) is sensitive to changes in frequency and current parameters at the tractography defined optimal target and (2) tracks with depression state over time. Connectome-based and machine learning approaches will be used to define the most robust network biomarker and its response characteristics. Once defined, the control policy will be tested in a second phase feasibility study where parameters for initial stimulation will be selected based on the depression brain state biomarker and adjustments made to correct drift from the predefined target signal. If successful, the data- driven model and control strategy will enable objective, rational clinical programming of DBS stimulation for depression and provide a new model and approach for target identification, stimulation initiation and long-term monitoring and management of patients receiving this treatment. .
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Helen S Mayberg其他文献

Posttraumatic Stress Disorder: A State-of-the-Science Review
创伤后应激障碍:最新科学回顾
  • DOI:
    10.1176/foc.7.2.foc254
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Charles B. Nemeroff;J. Bremner;Edna B Foa;Helen S Mayberg;Carol S. North;Murray B. Stein
  • 通讯作者:
    Murray B. Stein
Support Vector Machine Classification of Resting State fMRI Datasets Using Dynamic Network Clusters
使用动态网络集群对静息态 fMRI 数据集进行支持向量机分类
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hyo Yul Byun;Helen S Mayberg
  • 通讯作者:
    Helen S Mayberg
The capacity of brain circuits to enhance psychiatry.
大脑回路增强精神病学的能力。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Dunlop;Helen S Mayberg
  • 通讯作者:
    Helen S Mayberg
Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic
针对情绪和焦虑障碍中的异常神经回路:从实验室到临床
  • DOI:
    10.1038/nn1944
  • 发表时间:
    2007-08-28
  • 期刊:
  • 影响因子:
    20.000
  • 作者:
    Kerry J Ressler;Helen S Mayberg
  • 通讯作者:
    Helen S Mayberg

Helen S Mayberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Helen S Mayberg', 18)}}的其他基金

Establishing the anatomical and functional mechanisms of white matter deep brain stimulation
建立白质深部脑刺激的解剖和功能机制
  • 批准号:
    10803745
  • 财政年份:
    2023
  • 资助金额:
    $ 152.72万
  • 项目类别:
Electrophysiological Biomarkers to Optimize DBS for Depression
电生理生物标志物优化 DBS 治疗抑郁症
  • 批准号:
    10604638
  • 财政年份:
    2022
  • 资助金额:
    $ 152.72万
  • 项目类别:
Electrophysiological Biomarkers to Optimize DBS for Depression
电生理生物标志物优化 DBS 治疗抑郁症
  • 批准号:
    10647096
  • 财政年份:
    2022
  • 资助金额:
    $ 152.72万
  • 项目类别:
Electrophysiological Biomarkers to Optimize DBS for Depression
电生理生物标志物优化 DBS 治疗抑郁症
  • 批准号:
    10310774
  • 财政年份:
    2021
  • 资助金额:
    $ 152.72万
  • 项目类别:
Electrophysiological Biomarkers to Optimize DBS for Depression
电生理生物标志物优化 DBS 治疗抑郁症
  • 批准号:
    9929246
  • 财政年份:
    2019
  • 资助金额:
    $ 152.72万
  • 项目类别:
Electrophysiological Biomarkers to Optimize DBS for Depression
电生理生物标志物优化 DBS 治疗抑郁症
  • 批准号:
    9869948
  • 财政年份:
    2017
  • 资助金额:
    $ 152.72万
  • 项目类别:
Electrophysiological Biomarkers to Optimize DBS for Depression
电生理生物标志物优化 DBS 治疗抑郁症
  • 批准号:
    10768061
  • 财政年份:
    2017
  • 资助金额:
    $ 152.72万
  • 项目类别:
Electrophysiological Biomarkers to Optimize DBS for Depression
电生理生物标志物优化 DBS 治疗抑郁症
  • 批准号:
    10545620
  • 财政年份:
    2017
  • 资助金额:
    $ 152.72万
  • 项目类别:
Electrophysiological Biomarkers to Optimize DBS for Depression
电生理生物标志物优化 DBS 治疗抑郁症
  • 批准号:
    10767494
  • 财政年份:
    2017
  • 资助金额:
    $ 152.72万
  • 项目类别:
Electrophysiological Biomarkers to Optimize DBS for Depression
电生理生物标志物优化 DBS 治疗抑郁症
  • 批准号:
    10349426
  • 财政年份:
    2017
  • 资助金额:
    $ 152.72万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 152.72万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 152.72万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 152.72万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 152.72万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 152.72万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 152.72万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 152.72万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 152.72万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 152.72万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 152.72万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了