Glial chemosensitivity and control of breathing in Rett syndrome
雷特综合征中胶质细胞的化学敏感性和呼吸控制
基本信息
- 批准号:10548130
- 负责人:
- 金额:$ 53.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimal ModelAnimalsAstrocytesBehaviorBrainBrain StemBrain regionBreathingCarbon DioxideCell NucleusCessation of lifeCommunicationDataElectrophysiology (science)ElementsExtracellular SpaceFailureGenesGoalsGrantHomeostasisIn VitroIonsKnockout MiceLinkMeasurementMediatingMembrane PotentialsMethyl-CpG-Binding Protein 2MolecularMorphologyMusMutationNeurodevelopmental DisorderNeuronsOnline Mendelian Inheritance In ManPatientsPhenotypePlethysmographyProcessQuality of lifeReflex actionRegulationRespiration DisordersRett SyndromeRoleSeizuresSiteSleepSliceSymptomsTestingTissuesViralWakefulnessWorkautistic behaviourcomorbidityextracellularhuman modelimprovedin vivoinsightloss of function mutationmortalitymouse modelnovelpatient populationprematurerespiratoryresponsetargeted treatmenttherapeutic target
项目摘要
SUMMARY
Rett syndrome (RTT) (OMIM #312750) is a severe X-linked neurodevelopmental disorder caused by mutations
in the methyl-CpG-binding protein 2 (MECP2). Although RTT patients suffer from many co-morbid phenotypes,
wake disordered breathing has a major negative impact quality of life and is associated with high mortality rate
in this patient population. Evidence from murine models of RTT suggest disordered breathing results in part
from a disrupted ability to regulate breathing in response to changes in tissue CO2/H+ (i.e., central
chemoreflex). The retrotrapezoid nucleus (RTN) is a critical chemosensitive brainstem nucleus, contains
CO2/H+-sensitive neurons and astrocytes that together produce a CO2/H+-dependent drive to breath. Previous
and preliminary data identify heteromeric Kir4.1/5.1 channels as key determinants of RTN astrocyte CO2/H+
chemosensitivity. However, homomeric Kir4.1 and heteromeric Kir4.1/5.1 are differentially CO2/H+ sensitive
and regulate divergent astrocyte processes including membrane potential and clearance of neuronally
released extracellular K+, and it is not clear which of these mechanisms contributes to RTN chemoreception
and disordered breathing in RTT. Our previous work showed that MeCP2 deficient mice have reduced levels
of Kir4.1 and 5.1 channels, diminished astrocytic Kir4.1/5.1-like currents, dysregulated extracellular K+. MeCP2
deficient mice also show a blunted ventilatory response to CO2. Similarly, preliminary results show that global
deletion of astrocyte Kir4.1 channels also blunts the ventilatory response to CO2. Importantly targeted
(re)expression of Kir4.1 specifically in RTN astrocytes rescued disordered breathing in both Kir4.1 cKO and
MeCP2 deficient mice. Preliminary data also show that RTN astrocytes from Kir5.1 KO animals lack CO2/H+
sensitivity, thus suggesting heteromeric Kir4.1/5.1 channels regulate RTN astrocyte chemosensitivity.
Recent ultrastructural studies indicate reduced astrocytic coverage of neuronal elements during sleep together
with increased extracellular space; thus necessitating state-dependent changes in astrocyte ion and transmitter
homeostasis, that may account for a reduced ventilatory response to CO2 during sleep. Consistent with this,
preliminary results show that RTN astrocytes undergo a ~25% volume increase in the wake state as compared
to sleep. Based on this, we hypothesize that Kir4.1/5.1 deficiency and compromised astrocyte
chemoreception are responsible for state-dependent disordered breathing in RTT. In this proposal, we
use an established mouse model of RTT, an inducible astrocyte specific Kir4.1 knockout mouse in conjunction
with astrocyte targeted AAV, astrocyte volume and morphological complexity measurements, slice
electrophysiology, and whole-animal plethysmography to explore the sleep-wake state-dependent
contributions of Kir4.1/5.1 channels to RTN chemoreception and respiratory activity in RTT. Understanding
how Kir4.1 and Kir5.1 contribute to RTN chemoreception across sleep-wake states and disordered breathing
may provide mechanistic insight for targeted treatment of disordered breathing in RTT.
总结
Rett综合征(RTT)(OMIM #312750)是一种由突变引起的严重X连锁神经发育障碍
甲基CpG结合蛋白2(MECP2)尽管RTT患者患有许多共病表型,
唤醒呼吸紊乱对生活质量有重大的负面影响,并与高死亡率相关
在这个病人群体中。来自RTT小鼠模型的证据表明,呼吸障碍部分导致
由于响应组织CO2/H+变化而调节呼吸的能力被破坏(即,中央
化学反射)。后斜方核(RTN)是脑干化学敏感的重要核团,
CO2/H+敏感神经元和星形胶质细胞共同产生CO2/H+依赖性呼吸驱动。先前
初步数据确定异聚Kir4.1/5.1通道是RTN星形胶质细胞CO2/H+的关键决定因素
化疗敏感性然而,同聚Kir4.1和异聚Kir4.1/5.1对CO2/H+的敏感性不同
并调节星形胶质细胞的分化过程,包括膜电位和神经元的清除。
释放细胞外K+,但尚不清楚这些机制中的哪一个有助于RTN化学感受
和呼吸紊乱我们以前的工作表明,MeCP2缺陷小鼠的水平降低,
Kir4.1和5.1通道,减少星形胶质细胞Kir4.1/5.1样电流,失调的细胞外K+。MeCP2
缺陷型小鼠对CO2也表现出迟钝的呼吸反应。同样,初步结果显示,全球
星形胶质细胞Kir4.1通道的缺失也减弱了对CO2的反应。重要目标
Kir4.1在RTN星形胶质细胞中的特异性(重新)表达挽救了Kir4.1 cKO和
MeCP2缺陷小鼠。初步数据还显示,来自Kir5.1 KO动物的RTN星形胶质细胞缺乏CO2/H +
因此表明异聚Kir4.1/5.1通道调节RTN星形胶质细胞的化学敏感性。
最近的超微结构研究表明,在一起睡眠期间,星形胶质细胞神经元元件的覆盖减少
随着细胞外空间的增加;因此需要星形胶质细胞离子和递质的状态依赖性变化
内稳态,这可能是睡眠期间对CO2的呼吸反应降低的原因。与此相一致,
初步结果显示,与对照组相比,RTN星形胶质细胞在唤醒状态下体积增加约25%。
睡吧基于此,我们假设Kir4.1/5.1缺陷和受损的星形胶质细胞
化学感受是RTT中状态依赖性呼吸紊乱的原因。在本提案中,我们
使用已建立的RTT小鼠模型,可诱导星形胶质细胞特异性Kir4.1敲除小鼠,
使用星形胶质细胞靶向AAV、星形胶质细胞体积和形态复杂性测量,切片
电生理学和整体动物体积描记法来探索睡眠-觉醒状态依赖性
Kir4.1/5.1通道对RTT中RTN化学感受和呼吸活动的贡献。理解
Kir4.1和Kir5.1如何在睡眠-觉醒状态和呼吸紊乱中促进RTN化学感受
可能为RTT中呼吸障碍的靶向治疗提供机制见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL K MULKEY其他文献
DANIEL K MULKEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL K MULKEY', 18)}}的其他基金
Molecular signature of parafacial expiratory neurons
面旁呼气神经元的分子特征
- 批准号:
10750185 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
Defining Astrocyte Heterogenity Across the Brainstem Respiratory Circuit
定义脑干呼吸回路中星形胶质细胞的异质性
- 批准号:
9896328 - 财政年份:2019
- 资助金额:
$ 53.28万 - 项目类别:
Defining Astrocyte Heterogenity Across the Brainstem Respiratory Circuit
定义脑干呼吸回路中星形胶质细胞的异质性
- 批准号:
10019601 - 财政年份:2019
- 资助金额:
$ 53.28万 - 项目类别:
Role of KCNQ2 Channels in Control of Breathing
KCNQ2 通道在呼吸控制中的作用
- 批准号:
10467261 - 财政年份:2018
- 资助金额:
$ 53.28万 - 项目类别:
Role of KCNQ2 Channels in Control of Breathing
KCNQ2 通道在呼吸控制中的作用
- 批准号:
10613575 - 财政年份:2018
- 资助金额:
$ 53.28万 - 项目类别:
Role of KCNQ2 Channels in Control of Breathing
KCNQ2 通道在呼吸控制中的作用
- 批准号:
10771781 - 财政年份:2018
- 资助金额:
$ 53.28万 - 项目类别:
Glial chemosensitivity: pH sensing and interactions with neuronal chemoreceptors
胶质细胞化学敏感性:pH 传感及其与神经元化学感受器的相互作用
- 批准号:
8268399 - 财政年份:2010
- 资助金额:
$ 53.28万 - 项目类别:
Glial chemosensitivity: molecular mechanisms of pH sensing and interactions with
胶质细胞化学敏感性:pH 传感及其相互作用的分子机制
- 批准号:
8113330 - 财政年份:2010
- 资助金额:
$ 53.28万 - 项目类别:
Glial chemosensitivity: molecular mechanisms of pH sensing and interactions with
胶质细胞化学敏感性:pH 传感及其相互作用的分子机制
- 批准号:
7948714 - 财政年份:2010
- 资助金额:
$ 53.28万 - 项目类别:
Glial chemosensitivity and control of breathing in Rett syndrome
雷特综合征中胶质细胞的化学敏感性和呼吸控制
- 批准号:
10321293 - 财政年份:2010
- 资助金额:
$ 53.28万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




