Glial chemosensitivity and control of breathing in Rett syndrome
雷特综合征中胶质细胞的化学敏感性和呼吸控制
基本信息
- 批准号:10548130
- 负责人:
- 金额:$ 53.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimal ModelAnimalsAstrocytesBehaviorBrainBrain StemBrain regionBreathingCarbon DioxideCell NucleusCessation of lifeCommunicationDataElectrophysiology (science)ElementsExtracellular SpaceFailureGenesGoalsGrantHomeostasisIn VitroIonsKnockout MiceLinkMeasurementMediatingMembrane PotentialsMethyl-CpG-Binding Protein 2MolecularMorphologyMusMutationNeurodevelopmental DisorderNeuronsOnline Mendelian Inheritance In ManPatientsPhenotypePlethysmographyProcessQuality of lifeReflex actionRegulationRespiration DisordersRett SyndromeRoleSeizuresSiteSleepSliceSymptomsTestingTissuesViralWakefulnessWorkautistic behaviourcomorbidityextracellularhuman modelimprovedin vivoinsightloss of function mutationmortalitymouse modelnovelpatient populationprematurerespiratoryresponsetargeted treatmenttherapeutic target
项目摘要
SUMMARY
Rett syndrome (RTT) (OMIM #312750) is a severe X-linked neurodevelopmental disorder caused by mutations
in the methyl-CpG-binding protein 2 (MECP2). Although RTT patients suffer from many co-morbid phenotypes,
wake disordered breathing has a major negative impact quality of life and is associated with high mortality rate
in this patient population. Evidence from murine models of RTT suggest disordered breathing results in part
from a disrupted ability to regulate breathing in response to changes in tissue CO2/H+ (i.e., central
chemoreflex). The retrotrapezoid nucleus (RTN) is a critical chemosensitive brainstem nucleus, contains
CO2/H+-sensitive neurons and astrocytes that together produce a CO2/H+-dependent drive to breath. Previous
and preliminary data identify heteromeric Kir4.1/5.1 channels as key determinants of RTN astrocyte CO2/H+
chemosensitivity. However, homomeric Kir4.1 and heteromeric Kir4.1/5.1 are differentially CO2/H+ sensitive
and regulate divergent astrocyte processes including membrane potential and clearance of neuronally
released extracellular K+, and it is not clear which of these mechanisms contributes to RTN chemoreception
and disordered breathing in RTT. Our previous work showed that MeCP2 deficient mice have reduced levels
of Kir4.1 and 5.1 channels, diminished astrocytic Kir4.1/5.1-like currents, dysregulated extracellular K+. MeCP2
deficient mice also show a blunted ventilatory response to CO2. Similarly, preliminary results show that global
deletion of astrocyte Kir4.1 channels also blunts the ventilatory response to CO2. Importantly targeted
(re)expression of Kir4.1 specifically in RTN astrocytes rescued disordered breathing in both Kir4.1 cKO and
MeCP2 deficient mice. Preliminary data also show that RTN astrocytes from Kir5.1 KO animals lack CO2/H+
sensitivity, thus suggesting heteromeric Kir4.1/5.1 channels regulate RTN astrocyte chemosensitivity.
Recent ultrastructural studies indicate reduced astrocytic coverage of neuronal elements during sleep together
with increased extracellular space; thus necessitating state-dependent changes in astrocyte ion and transmitter
homeostasis, that may account for a reduced ventilatory response to CO2 during sleep. Consistent with this,
preliminary results show that RTN astrocytes undergo a ~25% volume increase in the wake state as compared
to sleep. Based on this, we hypothesize that Kir4.1/5.1 deficiency and compromised astrocyte
chemoreception are responsible for state-dependent disordered breathing in RTT. In this proposal, we
use an established mouse model of RTT, an inducible astrocyte specific Kir4.1 knockout mouse in conjunction
with astrocyte targeted AAV, astrocyte volume and morphological complexity measurements, slice
electrophysiology, and whole-animal plethysmography to explore the sleep-wake state-dependent
contributions of Kir4.1/5.1 channels to RTN chemoreception and respiratory activity in RTT. Understanding
how Kir4.1 and Kir5.1 contribute to RTN chemoreception across sleep-wake states and disordered breathing
may provide mechanistic insight for targeted treatment of disordered breathing in RTT.
概括
Rett 综合征 (RTT) (OMIM #312750) 是一种由突变引起的严重 X 连锁神经发育障碍
存在于甲基 CpG 结合蛋白 2 (MECP2) 中。尽管 RTT 患者患有许多共病表型,
清醒时呼吸紊乱对生活质量产生重大负面影响,并与高死亡率相关
在这个患者群体中。来自 RTT 小鼠模型的证据表明呼吸紊乱在一定程度上会导致
因组织 CO2/H+(即中枢神经系统)变化而调节呼吸的能力受到破坏
化学反射)。梯形后核(RTN)是一个关键的化学敏感性脑干核,包含
CO2/H+ 敏感神经元和星形胶质细胞共同产生 CO2/H+ 依赖性呼吸驱动。以前的
初步数据确定异聚 Kir4.1/5.1 通道是 RTN 星形胶质细胞 CO2/H+ 的关键决定因素
化学敏感性。然而,同聚体 Kir4.1 和异聚体 Kir4.1/5.1 对 CO2/H+ 的敏感性不同
并调节不同的星形胶质细胞过程,包括膜电位和神经元清除
释放细胞外 K+,目前尚不清楚这些机制中哪一种有助于 RTN 化学感受
RTT 中呼吸紊乱。我们之前的工作表明 MeCP2 缺陷小鼠的水平降低
Kir4.1 和 5.1 通道的缺失,星形胶质细胞 Kir4.1/5.1 样电流减少,细胞外 K+ 失调。甲基CP2
缺陷小鼠还表现出对二氧化碳的通气反应迟钝。同样,初步结果表明,全球
星形胶质细胞 Kir4.1 通道的缺失也会减弱对 CO2 的通气反应。重点针对性
在 RTN 星形胶质细胞中特异地(重新)表达 Kir4.1 可挽救 Kir4.1 cKO 和 Kir4.1 cKO 中的呼吸紊乱
MeCP2 缺陷小鼠。初步数据还表明,来自 Kir5.1 KO 动物的 RTN 星形胶质细胞缺乏 CO2/H+
敏感性,因此表明异聚 Kir4.1/5.1 通道调节 RTN 星形胶质细胞的化学敏感性。
最近的超微结构研究表明,一起睡觉时星形胶质细胞对神经元元素的覆盖减少
细胞外空间增加;因此需要星形胶质细胞离子和递质发生状态依赖性变化
体内平衡,这可能是睡眠期间对二氧化碳的通气反应减少的原因。与此相一致的是,
初步结果表明,与清醒状态相比,RTN 星形胶质细胞的体积增加了约 25%
睡觉。基于此,我们假设 Kir4.1/5.1 缺陷和星形胶质细胞受损
化学感受是 RTT 中状态依赖性呼吸紊乱的原因。在这个提案中,我们
使用已建立的 RTT 小鼠模型,结合诱导型星形胶质细胞特异性 Kir4.1 敲除小鼠
星形胶质细胞靶向 AAV、星形胶质细胞体积和形态复杂性测量、切片
电生理学和全动物体积描记法探索睡眠-觉醒状态依赖性
Kir4.1/5.1 通道对 RTT 中 RTN 化学感受和呼吸活动的贡献。理解
Kir4.1 和 Kir5.1 如何在睡眠-觉醒状态和呼吸紊乱状态下促进 RTN 化学感受
可能为 RTT 呼吸障碍的靶向治疗提供机制见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL K MULKEY其他文献
DANIEL K MULKEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL K MULKEY', 18)}}的其他基金
Molecular signature of parafacial expiratory neurons
面旁呼气神经元的分子特征
- 批准号:
10750185 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
Defining Astrocyte Heterogenity Across the Brainstem Respiratory Circuit
定义脑干呼吸回路中星形胶质细胞的异质性
- 批准号:
9896328 - 财政年份:2019
- 资助金额:
$ 53.28万 - 项目类别:
Defining Astrocyte Heterogenity Across the Brainstem Respiratory Circuit
定义脑干呼吸回路中星形胶质细胞的异质性
- 批准号:
10019601 - 财政年份:2019
- 资助金额:
$ 53.28万 - 项目类别:
Role of KCNQ2 Channels in Control of Breathing
KCNQ2 通道在呼吸控制中的作用
- 批准号:
10467261 - 财政年份:2018
- 资助金额:
$ 53.28万 - 项目类别:
Role of KCNQ2 Channels in Control of Breathing
KCNQ2 通道在呼吸控制中的作用
- 批准号:
10613575 - 财政年份:2018
- 资助金额:
$ 53.28万 - 项目类别:
Role of KCNQ2 Channels in Control of Breathing
KCNQ2 通道在呼吸控制中的作用
- 批准号:
10771781 - 财政年份:2018
- 资助金额:
$ 53.28万 - 项目类别:
Glial chemosensitivity: pH sensing and interactions with neuronal chemoreceptors
胶质细胞化学敏感性:pH 传感及其与神经元化学感受器的相互作用
- 批准号:
8268399 - 财政年份:2010
- 资助金额:
$ 53.28万 - 项目类别:
Glial chemosensitivity: molecular mechanisms of pH sensing and interactions with
胶质细胞化学敏感性:pH 传感及其相互作用的分子机制
- 批准号:
8113330 - 财政年份:2010
- 资助金额:
$ 53.28万 - 项目类别:
Glial chemosensitivity: molecular mechanisms of pH sensing and interactions with
胶质细胞化学敏感性:pH 传感及其相互作用的分子机制
- 批准号:
7948714 - 财政年份:2010
- 资助金额:
$ 53.28万 - 项目类别:
Glial chemosensitivity: pH sensing and interactions with neuronal chemoreceptors
胶质细胞化学敏感性:pH 传感及其与神经元化学感受器的相互作用
- 批准号:
8701364 - 财政年份:2010
- 资助金额:
$ 53.28万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 53.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




