Molecular mechanisms of intersecting human telomeric functions

人类端粒功能交叉的分子机制

基本信息

项目摘要

Molecular mechanisms of intersecting human telomeric functions Project Summary/Abstract Telomeres perform three essential functions in human cells. First, telomeres protect chromosomes against catastrophic end-to-end fusions by shielding them from the DNA damage sensing pathways. A six-membered protein complex called shelterin binds specifically to telomeric DNA to afford end protection. Second, telomeres facilitate end replication, allowing proliferating cells like stem/progenitor cells and cancer cells to replenish chromosome ends. A complex ribonucleoprotein enzyme called telomerase helps solve end replication. Telomerase facilitates end replication by adding telomeric DNA to chromosome ends using its RNA template. While telomerase activation in somatic cells is a hallmark of cancer, telomerase dysfunction in stem cells results in diseases called telomeropathies. Shelterin must protect chromosome ends from illicit DNA fusions but allow telomerase to access the same ends. A shelterin protein called TPP1 is instrumental in recruiting telomerase to telomeres, allowing shelterin to facilitate end protection and end replication, but the molecular mechanism of how TPP1 switches from end-protection mode to end-replication mode during S-phase is not known. Third, telomeres help homologous chromosomes undergo pairing and meiotic crossover to facilitate gamete production. To perform this function, telomeres attach to the nuclear envelope with the help of a meiosis-specific protein complex called TERB1-TERB2-MAJIN and connect with the cytoskeletal force- generating machinery. This allows chromosomes to move, enabling homologous chromosomes to pair up and undergo meiotic crossover. Paired meiotic chromosomes must be protected from telomeric recombination at the nuclear envelope, but how this occurs is not known at the molecular level. Illuminating the molecular interplay between the three telomeric functions will enrich our understanding of how genome integrity is upheld and suggest novel therapeutic avenues for diseases like cancers, telomeropathies, and infertility. This proposal aims to apply the knowledge of telomeres, telomerase, and meiotic assemblies, and expertise in biochemistry, crystallography, and cell biology to understand how human telomeres perform their three critical functions, especially in the contexts where these clash with one another. It also aims to discover new factors responsible for upholding these functions and reveal their underlying biochemical activities. Finally, this proposal aims to dissect the molecular mechanism of disease caused by the disruption of these functions and test new strategies for therapeutic development. The proposed approach to dissect the molecular mechanisms of intersecting telomeric processes will enhance our knowledge of how telomeres enable genome integrity and suggest therapeutic opportunities to tackle telomere dysfunction in disease.
人类端粒功能交叉的分子机制 项目总结/摘要 端粒在人类细胞中执行三种基本功能。首先,端粒保护染色体免受 灾难性的端到端融合,通过屏蔽它们从DNA损伤传感途径。六元 一种叫做shelterin的蛋白质复合物特异性地与端粒DNA结合以提供末端保护。第二,端粒 促进末端复制,允许增殖细胞如干/祖细胞和癌细胞补充 染色体末端一种叫做端粒酶的复杂的核糖核蛋白酶帮助解决末端复制。 端粒酶通过使用其RNA模板将端粒DNA添加到染色体末端来促进末端复制。 虽然体细胞中的端粒酶激活是癌症的标志,但干细胞中的端粒酶功能障碍 导致端粒病变庇护必须保护染色体末端免受非法DNA融合 但允许端粒酶到达相同的末端。一种名为TPP 1的庇护蛋白在招募中起作用 端粒酶的端粒,允许shelterin促进末端保护和末端复制,但分子 TPP 1在S阶段期间如何从端保护模式切换到端复制模式的机制不 知道的第三,端粒帮助同源染色体进行配对和减数分裂交换, 配子产生为了实现这一功能,端粒在一种蛋白质的帮助下附着在核膜上。 减数分裂特异性蛋白质复合物称为TERB 1-TERB 2-MAJIN,并与细胞骨架力连接- 发电机械这使得染色体可以移动,使同源染色体配对, 进行减数分裂交换。成对的减数分裂染色体必须在端粒重组时得到保护。 核被膜,但这是如何发生的是不知道在分子水平上。照亮了分子 这三种端粒功能之间的相互作用将丰富我们对基因组完整性如何维持的理解 并为癌症、端粒疾病和不孕不育等疾病提出了新的治疗途径。这项建议 旨在应用端粒,端粒酶和减数分裂组装的知识,以及生物化学的专业知识, 晶体学和细胞生物学来了解人类端粒如何执行其三个关键功能, 特别是在这些相互冲突的情况下。它还旨在发现新的因素, 以维持这些功能并揭示其潜在的生化活性。最后,本建议旨在 剖析这些功能被破坏所导致的疾病的分子机制, 治疗发展战略。提出的方法来剖析分子机制, 交叉的端粒过程将增强我们对端粒如何使基因组完整性的认识, 提示了解决疾病中端粒功能障碍的治疗机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jayakrishnan Nandakumar其他文献

Jayakrishnan Nandakumar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jayakrishnan Nandakumar', 18)}}的其他基金

Mechanisms of chromosome motility during mammalian meiosis
哺乳动物减数分裂过程中染色体运动的机制
  • 批准号:
    10442797
  • 财政年份:
    2022
  • 资助金额:
    $ 37.87万
  • 项目类别:
Mechanisms of chromosome motility during mammalian meiosis
哺乳动物减数分裂过程中染色体运动的机制
  • 批准号:
    10672204
  • 财政年份:
    2022
  • 资助金额:
    $ 37.87万
  • 项目类别:
Telomeric Protein Function and Regulation
端粒蛋白的功能和调控
  • 批准号:
    9326324
  • 财政年份:
    2016
  • 资助金额:
    $ 37.87万
  • 项目类别:
Telomeric Protein Function and Regulation
端粒蛋白的功能和调控
  • 批准号:
    9751086
  • 财政年份:
    2016
  • 资助金额:
    $ 37.87万
  • 项目类别:
The role fo the TPP1 peotein in telomerase function and cancer cell survival
TPP1蛋白在端粒酶功能和癌细胞存活中的作用
  • 批准号:
    8724761
  • 财政年份:
    2013
  • 资助金额:
    $ 37.87万
  • 项目类别:
The role fo the TPP1 peotein in telomerase function and cancer cell survival
TPP1蛋白在端粒酶功能和癌细胞存活中的作用
  • 批准号:
    8731837
  • 财政年份:
    2013
  • 资助金额:
    $ 37.87万
  • 项目类别:
Separation-of-function Mutants to Study the Biological Significance of Telomerase
功能分离突变体研究端粒酶的生物学意义
  • 批准号:
    8298843
  • 财政年份:
    2012
  • 资助金额:
    $ 37.87万
  • 项目类别:

相似海外基金

CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 37.87万
  • 项目类别:
    Continuing Grant
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
  • 批准号:
    2320160
  • 财政年份:
    2023
  • 资助金额:
    $ 37.87万
  • 项目类别:
    Standard Grant
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
  • 批准号:
    23H02481
  • 财政年份:
    2023
  • 资助金额:
    $ 37.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
  • 批准号:
    479334
  • 财政年份:
    2023
  • 资助金额:
    $ 37.87万
  • 项目类别:
    Operating Grants
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
  • 批准号:
    10655891
  • 财政年份:
    2023
  • 资助金额:
    $ 37.87万
  • 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
  • 批准号:
    10716621
  • 财政年份:
    2023
  • 资助金额:
    $ 37.87万
  • 项目类别:
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
  • 批准号:
    10637251
  • 财政年份:
    2023
  • 资助金额:
    $ 37.87万
  • 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
  • 批准号:
    10604822
  • 财政年份:
    2023
  • 资助金额:
    $ 37.87万
  • 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
  • 批准号:
    10621634
  • 财政年份:
    2023
  • 资助金额:
    $ 37.87万
  • 项目类别:
Examination of risk assessment and biochemical assessment of fracture development focusing on the body composition of patients with rheumatoid arthritis
关注类风湿性关节炎患者身体成分的骨折发生风险评估和生化评估检查
  • 批准号:
    22KJ2600
  • 财政年份:
    2023
  • 资助金额:
    $ 37.87万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了