Separation-of-function Mutants to Study the Biological Significance of Telomerase

功能分离突变体研究端粒酶的生物学意义

基本信息

  • 批准号:
    8298843
  • 负责人:
  • 金额:
    $ 9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-15 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Mammalian telomerase is a specialized reverse transcriptase that extends the 3' ends of chromosomes with telomeric DNA. Because telomerase is weakly expressed in somatic cells, but is overexpressed in 90% of cancer cells, it serves as an attractive target for anti-cancer drug design. A multi- protein complex known as shelterin associates specifically with telomeric DNA to repress illicit DNA fusions at mammalian chromosome ends. If the normal function of shelterin is to 'protect' chromosome ends, how does telomerase gain access to these ends to extend them? POT1-TPP1 is a shelterin sub-complex that binds single-stranded telomeric DNA with high specificity and affinity. A major function of POT1-TPP1 in vivo is to repress DNA damage recognition events at telomeres. Given its role in chromosome end-protection, POT1- TPP1 might be expected to inhibit telomerase by preventing its access to chromosome ends. Surprisingly, POT1-TPP1 increases telomerase processivity in vitro. Additionally, the OB domain of TPP1 is involved in telomerase recruitment to telomeres. The stimulation of telomerase by POT1-TPP1 has critical physiological significance insofar as the telomerase activity associated with cancer cells might require POT1-TPP1-based stimulation. Here, it is hypothesized that a surface on the OB domain of TPP1 interacts directly with telomerase to give rise to telomerase recruitment and stimulation. Enzymology in combination with mammalian cell biology and structural biology will be used to test this hypothesis and determine the consequence of telomerase stimulation by TPP1 in cancer cells. This will be the first study to assess directly the biological importance of telomerase stimulation by TPP1 or any mammalian shelterin subcomplex. The specific aims of the project are to: 1. Identify structural elements in human TPP1 that lead to telomerase processivity stimulation using a site-directed mutagenesis screen, looking for separation-of-function mutants defective specifically in telomerase stimulation in vitro but not in DNA end-protection. 2. Determine the physiological importance and mechanism of telomerase stimulation by TPP1 in HeLa-based and lung cancer cell-lines that knock down endogenous TPP1 and express wild-type or telomerase stimulation-defective mutants of TPP1 in a stable manner. These cell lines will be tested for telomere length defects and telomerase recruitment defects. 3a. Obtain a high-resolution view of chromosome-end protection by POT1-TPP1 by crystallizing a POT1-TPP1 fusion protein in complex with telomeric DNA. 3b. Obtain insights into telomerase stimulation by TPP1 by crystallizing a biochemically competent, minimal, TPP1-telomerase complex defined through truncation analyses of the individual components. The K99 phase of the proposed aims will be conducted under the mentorship of Dr. Tom Cech, whose mentoring skills have helped more than 30 of his mentees to attain faculty positions in research institutions in the US and worldwide. The Cech lab is a leader in the biochemistry of telomerase and telomeres, and is equipped with the resources required to address the biochemical/structural aims of the proposed study. For the HeLa-based experiments, we have an ongoing collaboration with Dr. Leslie Leinwand of the Mol. Cell and Dev. Biology Department of UC Boulder. For the experiments in the lung cancer cell lines, I will be co- mentored by Dr. James DeGregori of the UC Cancer Center Denver and will have full access to the facilities of his lab and the Cancer Center. Hence, I strongly believe that the facilities at CU Boulder and at the Cancer Center will provide me with the ideal environment to execute the proposed goals of the K99/R00 application. My goal in the K99 phase of research is to complete, in 2 years, Aim 1 and Aim 2A&C of the proposal, and apply for an independent faculty position in the US. Aims 2B&D and Aim 3 will be completed in the R00 phase. In the long-term, I wish to become an independent investigator, running a lab consisting of people from various backgrounds (biochemistry, structural biology, and cell biology) working together to answer critical questions in telomere biology and its implications in cancer. In addition to allowing me to hire staff and bu lab supplies, the K99/R00 award will greatly facilitate my postdoc-to-PI transition by allowing me to attend a cancer biology course, a telomerase-cancer AACR meeting, and a microscopy workshop conducted by Cold Spring Harbor labs. I have obtained formal training in the responsible conduct of research (RCR) during my Ph.D. and will continue to take steps to acquire RCR training during and after my postdoc. I began my research career as an M.S. student synthesizing small molecules, but have since shifted my focus to more to bio-oriented problems. As a technician I studied protein folding, then, as a graduate student I employed biochemistry and x-ray crystallography to study RNA/DNA repair, and now, working as a post-doc with Dr. Tom Cech I am beginning to study telomerase regulation in human cancer cells. During the course of my scientific training, I have learnt theoretical concepts and developed experimental skills in diverse areas of research. I believe that the knowledge and experience I have gained thus far will greatly assist in the successful completion of the aims of the K99/R00 proposal in a timely fashion. PUBLIC HEALTH RELEVANCE: Telomerase is an enzyme that is overproduced in 90% of human cancers and is therefore considered a major drug target for fighting cancer. Biochemically, this enzyme is stimulated by a protein called TPP1, and the importance of this stimulation in cancer cells will be tested in the proposed study. From this study, it will be possible to understand how TPP1 stimulates telomerase to full potency in cancer cells, and the knowledge gained may pave the path to the design of a new generation of anti-cancer drugs.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jayakrishnan Nandakumar其他文献

Jayakrishnan Nandakumar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jayakrishnan Nandakumar', 18)}}的其他基金

Molecular mechanisms of intersecting human telomeric functions
人类端粒功能交叉的分子机制
  • 批准号:
    10550394
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
Mechanisms of chromosome motility during mammalian meiosis
哺乳动物减数分裂过程中染色体运动的机制
  • 批准号:
    10442797
  • 财政年份:
    2022
  • 资助金额:
    $ 9万
  • 项目类别:
Mechanisms of chromosome motility during mammalian meiosis
哺乳动物减数分裂过程中染色体运动的机制
  • 批准号:
    10672204
  • 财政年份:
    2022
  • 资助金额:
    $ 9万
  • 项目类别:
Telomeric Protein Function and Regulation
端粒蛋白的功能和调控
  • 批准号:
    9326324
  • 财政年份:
    2016
  • 资助金额:
    $ 9万
  • 项目类别:
Telomeric Protein Function and Regulation
端粒蛋白的功能和调控
  • 批准号:
    9751086
  • 财政年份:
    2016
  • 资助金额:
    $ 9万
  • 项目类别:
The role fo the TPP1 peotein in telomerase function and cancer cell survival
TPP1蛋白在端粒酶功能和癌细胞存活中的作用
  • 批准号:
    8724761
  • 财政年份:
    2013
  • 资助金额:
    $ 9万
  • 项目类别:
The role fo the TPP1 peotein in telomerase function and cancer cell survival
TPP1蛋白在端粒酶功能和癌细胞存活中的作用
  • 批准号:
    8731837
  • 财政年份:
    2013
  • 资助金额:
    $ 9万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了