Engineering Dynamic 3D-Bioprinted Models of Pulmonary Vascular Disease
肺血管疾病的工程动态 3D 生物打印模型
基本信息
- 批准号:10549829
- 负责人:
- 金额:$ 3.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintActinsBathingBiocompatible MaterialsBiological AssayBiological ModelsBiomanufacturingBiomedical EngineeringBlood PressureBlood VesselsCardiovascular DiseasesCardiovascular systemCell Culture TechniquesCell SurvivalCellsChronicClinicalCollagenColoradoComplexCrosslinkerCuesDepositionDevelopmentDimensionsDiseaseDisease ProgressionElasticityEncapsulatedEngineeringEnvironmentExhibitsExtracellular MatrixExtracellular Matrix ProteinsFellowshipFibroblastsFibrosisFoundationsGelatinGene ExpressionGenesGeometryGoalsHumanHydrogelsImmunohistochemistryIn VitroLaboratoriesLearningLightLungLung diseasesMatrix MetalloproteinasesMeasuresMedicalMentorsMethacrylatesMethodsModelingModulusMyofibroblastPathogenesisPathologicPathologyPatient IsolationPatientsPeptidesPhenotypePhysiciansPhysiologicalPhysiologyPolymersPopulationProductionProliferatingProteinsPulmonary HypertensionPulmonary arterial remodelingQualifyingQuantitative Reverse Transcriptase PCRReactionResearchResearch PersonnelRight Ventricular DysfunctionScientistSmooth MuscleSolidStructureSymptomsSyringesSystemTechniquesTechnologyTestingTherapeuticTimeTissue-Specific Gene ExpressionTissuesTrainingTranslational ResearchUltraviolet RaysUniversitiesVascular DiseasesVascular remodelingbioinkbioprintingcell typeethylene glycolexperienceexperimental studyhuman diseasehuman modelhuman studyimmunocytochemistryinsightinventionmanufacturemechanical propertiesmortalitynew therapeutic targetnovelpolymerizationpre-doctoralpulmonary arterial hypertensionpulmonary vascular disorderresponseright ventricular failuresuccesssymposiumthree dimensional cell culturethree dimensional structurethree-dimensional modelingtime usetool
项目摘要
PROJECT SUMMARY/ABSTRACT
Pulmonary arterial hypertension (PAH) is a progressive and incurable disease, characterized by elevated
pulmonary blood pressure, remodeling of the pulmonary arteries, and ultimately the development of right
ventricular failure. Unfortunately, the only clinically available therapeutic treatments mitigate symptoms but do
not cure the disease. Existing cell culture techniques represent a significant barrier to discovering new
therapeutic targets for PAH because these systems do not adequately reproduce key aspects of human
physiology, specifically, the complex 3D structure of the pulmonary vasculature and the time-dependent
changes in extracellular matrix (ECM) mechanical properties that occur during disease progression. Therefore,
an urgent need remains to develop new tools and technologies that enable us to study the pathogenesis of
PAH over time. We propose to develop a new class of phototunable poly(ethylene glycol) (PEG)-based
hydrogel biomaterials and biomanufacturing techniques that allow investigators to control the mechanical
properties of the local microenvironment (i.e., stiffen) on-demand around patient-derived fibroblasts
encapsulated within 3D-printed vascular models using focused light, with the goal of emulating PAH
pathogenesis in vitro. The advanced biomaterial platform implemented here will provide the foundation for
biological models of increasing complexity comprising multiple cell types that are cultured under flow under
development in the sponsor's laboratory that reveal novel mechanistic insights into reduction of human
disease. This project will bring together the applicant and a diverse mentoring team made up of bioengineers
and clinician-scientists specializing in cardiovascular and pulmonary diseases to further develop the pulmonary
workforce. Fellowship training will include clinical experiences through the Pulmonary Hypertension
Breakthrough Initiative, presentations at research conferences and grand rounds to aid professional
development, and hands-on training in Dr. Kurt Stenmark's Cardiovascular Pulmonary Research Lab to learn
experimental techniques essential to understanding PAH. The completed model will provide a platform for
testing and validating therapies for pulmonary hypertension, advancing translational research in this field. We
propose two specific aims to demonstrate the feasibility of this approach. AIM I: Engineer a dynamic 3D-
bioprinted cell culture platform with controllable modulus of elasticity. AIM II: Investigate the influence of
dimensionality and material modulus on fibroblast activation using patient-derived cells. The success of Aim I
will be measured through rheological characterization and cell viability assays. Aim II will measure fibroblast
activation through immunohistochemistry and a concise qRT-PCR array to compare phenotypic changes
among healthy patient-derived cells grown in 3D-bioprinted blood vessel mimics that emulate pathological
ECM, healthy cells grown on 2D hydrogel substrates, and freshly isolated PAH patient cells.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Duncan J Davis-Hall其他文献
Duncan J Davis-Hall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Duncan J Davis-Hall', 18)}}的其他基金
Engineering Dynamic 3D-Bioprinted Models of Pulmonary Vascular Disease
肺血管疾病的工程动态 3D 生物打印模型
- 批准号:
10514521 - 财政年份:2021
- 资助金额:
$ 3.92万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 3.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 3.92万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 3.92万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 3.92万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 3.92万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 3.92万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 3.92万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 3.92万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 3.92万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 3.92万 - 项目类别:
Standard Grant














{{item.name}}会员




