Engineering Dynamic 3D-Bioprinted Models of Pulmonary Vascular Disease

肺血管疾病的工程动态 3D 生物打印模型

基本信息

  • 批准号:
    10549829
  • 负责人:
  • 金额:
    $ 3.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Pulmonary arterial hypertension (PAH) is a progressive and incurable disease, characterized by elevated pulmonary blood pressure, remodeling of the pulmonary arteries, and ultimately the development of right ventricular failure. Unfortunately, the only clinically available therapeutic treatments mitigate symptoms but do not cure the disease. Existing cell culture techniques represent a significant barrier to discovering new therapeutic targets for PAH because these systems do not adequately reproduce key aspects of human physiology, specifically, the complex 3D structure of the pulmonary vasculature and the time-dependent changes in extracellular matrix (ECM) mechanical properties that occur during disease progression. Therefore, an urgent need remains to develop new tools and technologies that enable us to study the pathogenesis of PAH over time. We propose to develop a new class of phototunable poly(ethylene glycol) (PEG)-based hydrogel biomaterials and biomanufacturing techniques that allow investigators to control the mechanical properties of the local microenvironment (i.e., stiffen) on-demand around patient-derived fibroblasts encapsulated within 3D-printed vascular models using focused light, with the goal of emulating PAH pathogenesis in vitro. The advanced biomaterial platform implemented here will provide the foundation for biological models of increasing complexity comprising multiple cell types that are cultured under flow under development in the sponsor's laboratory that reveal novel mechanistic insights into reduction of human disease. This project will bring together the applicant and a diverse mentoring team made up of bioengineers and clinician-scientists specializing in cardiovascular and pulmonary diseases to further develop the pulmonary workforce. Fellowship training will include clinical experiences through the Pulmonary Hypertension Breakthrough Initiative, presentations at research conferences and grand rounds to aid professional development, and hands-on training in Dr. Kurt Stenmark's Cardiovascular Pulmonary Research Lab to learn experimental techniques essential to understanding PAH. The completed model will provide a platform for testing and validating therapies for pulmonary hypertension, advancing translational research in this field. We propose two specific aims to demonstrate the feasibility of this approach. AIM I: Engineer a dynamic 3D- bioprinted cell culture platform with controllable modulus of elasticity. AIM II: Investigate the influence of dimensionality and material modulus on fibroblast activation using patient-derived cells. The success of Aim I will be measured through rheological characterization and cell viability assays. Aim II will measure fibroblast activation through immunohistochemistry and a concise qRT-PCR array to compare phenotypic changes among healthy patient-derived cells grown in 3D-bioprinted blood vessel mimics that emulate pathological ECM, healthy cells grown on 2D hydrogel substrates, and freshly isolated PAH patient cells.
项目概要/摘要 肺动脉高压(PAH)是一种进行性且无法治愈的疾病,其特征是血压升高 肺血压,肺动脉重塑,最终发展右肺 心室衰竭。不幸的是,临床上唯一可用的治疗方法可以减轻症状,但不能 不能治愈疾病。现有的细胞培养技术是发现新细胞的重大障碍 PAH 的治疗目标,因为这些系统不能充分复制人类的关键方面 生理学,特别是肺血管系统的复杂 3D 结构和时间依赖性 疾病进展过程中发生的细胞外基质(ECM)机械特性的变化。所以, 仍然迫切需要开发新的工具和技术,使我们能够研究疾病的发病机制 PAH 随着时间的推移。我们建议开发一类新型的基于聚乙二醇(PEG)的光可调谐材料 水凝胶生物材料和生物制造技术使研究人员能够控制机械 按需改变患者来源的成纤维细胞周围局部微环境的特性(即变硬) 使用聚焦光封装在 3D 打印的血管模型中,目的是模拟 PAH 体外发病机制。这里实施的先进生物材料平台将为 越来越复杂的生物模型,包括在流动条件下培养的多种细胞类型 赞助商实验室的开发揭示了减少人类活动的新机制见解 疾病。该项目将汇集申请人和由生物工程师组成的多元化指导团队 以及专门研究心血管和肺部疾病的临床医生科学家,以进一步开发肺部疾病 劳动力。奖学金培训将包括肺动脉高压的临床经验 突破性倡议、在研究会议和大型回合中的演讲以帮助专业人士 在 Kurt Stenmark 博士的心血管肺研究实验室进行开发和实践培训以学习 实验技术对于了解 PAH 至关重要。完成的模型将为 测试和验证肺动脉高压的治疗方法,推进该领域的转化研究。我们 提出两个具体目标来证明这种方法的可行性。目标 I:设计动态 3D- 具有可控弹性模量的生物打印细胞培养平台。 AIM II:调查影响 使用患者来源的细胞进行成纤维细胞激活的维数和材料模量。目标一号的成功 将通过流变学表征和细胞活力测定来测量。目标 II 将测量成纤维细胞 通过免疫组织化学激活和简洁的 qRT-PCR 阵列来比较表型变化 在模拟病理的 3D 生物打印血管模拟物中生长的健康患者来源的细胞 ECM、在 2D 水凝胶基质上生长的健康细胞以及新鲜分离的 PAH 患者细胞。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Duncan J Davis-Hall其他文献

Duncan J Davis-Hall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Duncan J Davis-Hall', 18)}}的其他基金

Engineering Dynamic 3D-Bioprinted Models of Pulmonary Vascular Disease
肺血管疾病的工程动态 3D 生物打印模型
  • 批准号:
    10514521
  • 财政年份:
    2021
  • 资助金额:
    $ 3.92万
  • 项目类别:

相似海外基金

Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
  • 批准号:
    22K13777
  • 财政年份:
    2022
  • 资助金额:
    $ 3.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
  • 批准号:
    10045111
  • 财政年份:
    2022
  • 资助金额:
    $ 3.92万
  • 项目类别:
    Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
  • 批准号:
    2749141
  • 财政年份:
    2022
  • 资助金额:
    $ 3.92万
  • 项目类别:
    Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 3.92万
  • 项目类别:
    College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 3.92万
  • 项目类别:
    College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
  • 批准号:
    10801667
  • 财政年份:
    2019
  • 资助金额:
    $ 3.92万
  • 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1738138
  • 财政年份:
    2017
  • 资助金额:
    $ 3.92万
  • 项目类别:
    Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
  • 批准号:
    17K18852
  • 财政年份:
    2017
  • 资助金额:
    $ 3.92万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
  • 批准号:
    1612567
  • 财政年份:
    2016
  • 资助金额:
    $ 3.92万
  • 项目类别:
    Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1621732
  • 财政年份:
    2016
  • 资助金额:
    $ 3.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了