Engineering Dynamic 3D-Bioprinted Models of Pulmonary Vascular Disease
肺血管疾病的工程动态 3D 生物打印模型
基本信息
- 批准号:10549829
- 负责人:
- 金额:$ 3.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintActinsBathingBiocompatible MaterialsBiological AssayBiological ModelsBiomanufacturingBiomedical EngineeringBlood PressureBlood VesselsCardiovascular DiseasesCardiovascular systemCell Culture TechniquesCell SurvivalCellsChronicClinicalCollagenColoradoComplexCrosslinkerCuesDepositionDevelopmentDimensionsDiseaseDisease ProgressionElasticityEncapsulatedEngineeringEnvironmentExhibitsExtracellular MatrixExtracellular Matrix ProteinsFellowshipFibroblastsFibrosisFoundationsGelatinGene ExpressionGenesGeometryGoalsHumanHydrogelsImmunohistochemistryIn VitroLaboratoriesLearningLightLungLung diseasesMatrix MetalloproteinasesMeasuresMedicalMentorsMethacrylatesMethodsModelingModulusMyofibroblastPathogenesisPathologicPathologyPatient IsolationPatientsPeptidesPhenotypePhysiciansPhysiologicalPhysiologyPolymersPopulationProductionProliferatingProteinsPulmonary HypertensionPulmonary arterial remodelingQualifyingQuantitative Reverse Transcriptase PCRReactionResearchResearch PersonnelRight Ventricular DysfunctionScientistSmooth MuscleSolidStructureSymptomsSyringesSystemTechniquesTechnologyTestingTherapeuticTimeTissue-Specific Gene ExpressionTissuesTrainingTranslational ResearchUltraviolet RaysUniversitiesVascular DiseasesVascular remodelingbioinkbioprintingcell typeethylene glycolexperienceexperimental studyhuman diseasehuman modelhuman studyimmunocytochemistryinsightinventionmanufacturemechanical propertiesmortalitynew therapeutic targetnovelpolymerizationpre-doctoralpulmonary arterial hypertensionpulmonary vascular disorderresponseright ventricular failuresuccesssymposiumthree dimensional cell culturethree dimensional structurethree-dimensional modelingtime usetool
项目摘要
PROJECT SUMMARY/ABSTRACT
Pulmonary arterial hypertension (PAH) is a progressive and incurable disease, characterized by elevated
pulmonary blood pressure, remodeling of the pulmonary arteries, and ultimately the development of right
ventricular failure. Unfortunately, the only clinically available therapeutic treatments mitigate symptoms but do
not cure the disease. Existing cell culture techniques represent a significant barrier to discovering new
therapeutic targets for PAH because these systems do not adequately reproduce key aspects of human
physiology, specifically, the complex 3D structure of the pulmonary vasculature and the time-dependent
changes in extracellular matrix (ECM) mechanical properties that occur during disease progression. Therefore,
an urgent need remains to develop new tools and technologies that enable us to study the pathogenesis of
PAH over time. We propose to develop a new class of phototunable poly(ethylene glycol) (PEG)-based
hydrogel biomaterials and biomanufacturing techniques that allow investigators to control the mechanical
properties of the local microenvironment (i.e., stiffen) on-demand around patient-derived fibroblasts
encapsulated within 3D-printed vascular models using focused light, with the goal of emulating PAH
pathogenesis in vitro. The advanced biomaterial platform implemented here will provide the foundation for
biological models of increasing complexity comprising multiple cell types that are cultured under flow under
development in the sponsor's laboratory that reveal novel mechanistic insights into reduction of human
disease. This project will bring together the applicant and a diverse mentoring team made up of bioengineers
and clinician-scientists specializing in cardiovascular and pulmonary diseases to further develop the pulmonary
workforce. Fellowship training will include clinical experiences through the Pulmonary Hypertension
Breakthrough Initiative, presentations at research conferences and grand rounds to aid professional
development, and hands-on training in Dr. Kurt Stenmark's Cardiovascular Pulmonary Research Lab to learn
experimental techniques essential to understanding PAH. The completed model will provide a platform for
testing and validating therapies for pulmonary hypertension, advancing translational research in this field. We
propose two specific aims to demonstrate the feasibility of this approach. AIM I: Engineer a dynamic 3D-
bioprinted cell culture platform with controllable modulus of elasticity. AIM II: Investigate the influence of
dimensionality and material modulus on fibroblast activation using patient-derived cells. The success of Aim I
will be measured through rheological characterization and cell viability assays. Aim II will measure fibroblast
activation through immunohistochemistry and a concise qRT-PCR array to compare phenotypic changes
among healthy patient-derived cells grown in 3D-bioprinted blood vessel mimics that emulate pathological
ECM, healthy cells grown on 2D hydrogel substrates, and freshly isolated PAH patient cells.
项目总结/摘要
肺动脉高压(PAH)是一种进行性和不可治愈的疾病,其特征是肺动脉高压升高,
肺动脉血压,肺动脉重塑,并最终发展的权利,
心室衰竭不幸的是,临床上唯一可用的治疗方法减轻症状,但
而不是治愈疾病。现有的细胞培养技术代表了发现新的
PAH的治疗靶点,因为这些系统不能充分再现人类的关键方面,
生理学,特别是肺血管系统的复杂3D结构和时间依赖性
在疾病进展过程中发生的细胞外基质(ECM)机械特性的变化。因此,我们认为,
迫切需要开发新的工具和技术,使我们能够研究
PAH随时间推移。我们提出开发一类新的光可调聚乙二醇(PEG)基
水凝胶生物材料和生物制造技术,使研究人员能够控制机械
局部微环境的特性(即,3)按需围绕患者来源的成纤维细胞
使用聚焦光封装在3D打印血管模型中,目的是模拟PAH
体外致病性。这里实施的先进生物材料平台将为
包括多种细胞类型的日益复杂的生物模型,
在申办者的实验室的发展,揭示了新的机械见解,减少人类
疾病该项目将汇集申请人和由生物工程师组成的多元化指导团队
以及专门研究心血管和肺部疾病的临床科学家,
劳动力奖学金培训将包括通过肺动脉高压的临床经验
突破计划,在研究会议和大型圆桌会议上的演讲,以帮助专业人士
Kurt Stenmark博士的心血管肺研究实验室进行实践培训,
了解PAH所必需的实验技术。完成的模型将提供一个平台,
测试和验证肺动脉高压疗法,推进该领域的转化研究。我们
提出了两个具体目标,以证明这一办法的可行性。目标一:设计动态3D-
具有可控弹性模量的生物打印的细胞培养平台。目的二:研究
使用患者来源的细胞,对成纤维细胞活化的维度和材料模量进行了研究。Aim I的成功
将通过流变学表征和细胞活力测定来测量。Aim II将测量成纤维细胞
通过免疫组织化学和简洁的qRT-PCR阵列比较表型变化
在3D生物打印血管模拟物中生长的健康患者来源的细胞中,
ECM、在2D水凝胶基质上生长的健康细胞和新鲜分离的PAH患者细胞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Duncan J Davis-Hall其他文献
Duncan J Davis-Hall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Duncan J Davis-Hall', 18)}}的其他基金
Engineering Dynamic 3D-Bioprinted Models of Pulmonary Vascular Disease
肺血管疾病的工程动态 3D 生物打印模型
- 批准号:
10514521 - 财政年份:2021
- 资助金额:
$ 3.92万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 3.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 3.92万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 3.92万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 3.92万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 3.92万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 3.92万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 3.92万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 3.92万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 3.92万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 3.92万 - 项目类别:
Standard Grant














{{item.name}}会员




