Oxygen Activation by Mononuclear Copper(I) Active Sites

单核铜 (I) 活性位点的氧活化

基本信息

  • 批准号:
    10556191
  • 负责人:
  • 金额:
    $ 2.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-02-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract. (From Original Proposal) The interactions of coupled binuclear copper sites and dioxygen have been extensively studied in contexts crucial to life. This contrasts with analogous interactions between mononuclear copper sites and dioxygen, which are less well understood despite their importance in clinical, biological, and industrial settings. As such, furthering our understanding of these enzymes' mechanisms of action would have far reaching implications across a wide set of disciplines. This project focuses on mechanistic elucidation of the oxidative behaviors of three di erent monooxyge- nases featuring single copper active sites: tyramine -monooxygenase (T M), lytic polysaccharide monooxygenase (LPMO), and particulate methane monooxygenase (pMMO). The rst, T M, is closely related to human dopamine -monooxygenase (D M) and participates in invertebrate neurotransmitter regulation. As a noncoupled binuclear copper enzyme, it features two copper centers separated by 11 A, only one of which engages with O2. Out- standing questions on the timing of O2 binding to the reduced enzyme, hydrogen atom abstraction (HAA), and intermetallic electron transfer persist. The second enzyme, LPMO, has large industrial applications in renewable biofuels and has also been implicated as a virulence factor in several pathogens. Its active site comprises a single copper ion coordinated to two histidine residues and the N -terminal amine in a rare \histidine brace" geometry. Computational results inform the planned experiments, suggesting several mechanistic possibilities; though, some recent reports have questioned the role of O2 in favor of H2O2. The last enzyme, pMMO, is important in con- version of methane, a dangerous greenhouse gas, into methanol, a renewable fuel. It has long been thought to possess a coupled binuclear copper active site, but has recently been reappraised to have a mononuclear copper site also engaged in a histidine brace structural motif. This new suggestion means there is little mechanistic insight available, though it draws parallels between pMMO and LPMO. The project ultimately aims to shed light on how these enzymes oxidize their substrates, and to uncover useful and generalizable structure-function relations to be exploited in further clinical and industrial applications. Our speci c aims involve investigation of each class of enzyme using a battery of spectroscopies to uncover informative intermediates, capitalizing on the extensive instrumentation and experience available in the Solomon lab. As many of these transformations involve para- magnetic species, electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) experiments will allow direct interrogation of the copper center, particularly in combination with rapid freeze quench (RFQ) techniques. Additionally, stopped ow absorption, resonance Raman (rR), X-ray absorption (XAS), and X-ray emission (XES) will be heavily employed, especially when studying diamagnetic states. All of these studies will be supported by thorough computational investigations using density functional theory (DFT) methods, which will allow for further insight into the electronic structures and reaction energies. The training plan involves immersion in these spectroscopic techniques and in the eld of bioinorganic chemistry, all of which are new to the applicant.
项目概要/摘要。(From原提案) 耦合双核铜中心和分子氧的相互作用已经被广泛研究, 生命这与单核铜位点和分子氧之间的类似相互作用形成对比, 尽管它们在临床、生物学和工业环境中很重要,但仍被很好地理解。因此,促进我们的 对这些酶的作用机制的理解将对一系列广泛的 学科本项目的重点是三种不同的单氧化合物的氧化行为的机理阐明, 具有单一铜活性位点的酶:酪胺单加氧酶(TM)、溶解性多糖单加氧酶 (LPMO)和颗粒甲烷单加氧酶(pMMO)。第一个T M与人类多巴胺密切相关 - 单加氧酶(DM),参与无脊椎动物神经递质的调节。作为一个非偶联双核 铜酶,其特征在于由11 A分开的两个铜中心,其中只有一个与O2接合。出去- 关于O2与还原酶结合的时间,氢原子提取(HAA)的长期问题,以及 金属间电子转移持续存在。第二种酶,LPMO,在可再生能源中具有很大的工业应用, 生物燃料,也被认为是几种病原体的毒力因子。它的活性部位由一个 铜离子与两个组氨酸残基和N -末端胺配位,形成罕见的“组氨酸支架”构型。 计算结果为计划的实验提供了信息,提出了几种机械的可能性;尽管,一些 最近的报道质疑O2的作用有利于H2 O2。最后一种酶,pMMO,在con. 甲烷,一种危险的温室气体,转化为甲醇,一种可再生燃料。长期以来,人们一直认为 具有耦合的双核铜活性位点,但最近被重新评估为具有单核铜位点 也参与组氨酸支架结构基序。这个新的建议意味着几乎没有机械的洞察力 虽然它在pMMO和LPMO之间画出了相似之处。该项目的最终目的是阐明 这些酶如何氧化其底物,并揭示有用的和可推广的结构-功能关系 以用于进一步的临床和工业应用。我们的具体目标包括调查每一个类别 酶使用一组光谱来发现信息中间体,利用广泛的 所罗门实验室的仪器和经验。由于这些转变中有许多涉及帕拉- 磁性物质、电子顺磁共振(EPR)和磁性圆二色性(MCD)实验 将允许直接询问铜中心,特别是与快速冷冻淬火(Rapid Freeze Quench,缩写为REQ)相结合, 技术.此外,停止低吸收、共振拉曼(rR)、X射线吸收(XAS)和X射线吸收(X-ray absorption,X-ray absorption,X-ray absorption)也被称为共振拉曼光谱。 发射(XES)将被大量采用,特别是在研究抗磁态时。所有这些研究都将 通过使用密度泛函理论(DFT)方法进行彻底的计算研究, 允许进一步深入了解电子结构和反应能量。培训计划包括沉浸式 在这些光谱技术和生物无机化学领域中,所有这些对于申请人来说都是新的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wesley John Transue其他文献

Wesley John Transue的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了