Serious mental illness and incarceration: piloting the use of a multi sector linked administrative dataset

严重精神疾病和监禁:试点使用多部门链接的管理数据集

基本信息

  • 批准号:
    10551888
  • 负责人:
  • 金额:
    $ 23.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-17 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Mass incarceration of individuals with serious mental illness (SMI) is a public health and human rights crisis. Not since the mid-nineteenth century has the criminal justice system played such a large role in how American society responds to mental illness. Since the late 1960s researchers have noted ever-rising numbers of jail inmates with SMI, often caught in a "revolving door" of hospitalization, homelessness, and arrest. Incarceration is one of the most visible (and traumatic) moments of contact with the public system, and provides a window into the failures of the public mental health system. Our long-term objective is to inform and rigorously evaluate policy and interventions that seek to reduce law enforcement response to mental illness and end the mass incarceration of individuals with SMI. In line with NIMH Strategic Objectives 4.1B and 4.2, this R34 proposal furthers the development of a real-world data collection system to facilitate research and ongoing monitoring related to access, service continuity, equity, and outcomes such as incarceration and homelessness in diverse populations and settings. Our research approach is to leverage a regularly-updated Los Angeles County (LAC) county-wide administrative database, which links individuals across 8 public agencies from 2010 to the present, for research around incarceration and SMI. In partnership with LAC administrators/providers and non- LAC researchers, we will develop and test this database through algorithm development and validation, exploration of mental health service patterns leading up to incarceration, and testing of the algorithms and dataset using a pilot evaluation of mental health crisis interventions in lieu of law enforcement response, in preparation for an R01 proposal to evaluate the effects of policies and interventions that shift resources from criminal justice to new and existing mental health services. LAC as our study site allows for a particularly in- depth look because of its size (population>10 million) and diversity across a number of critical divides: urban/rural; racial; economic; cultural; and resource availability. Our specific aims are as follows: Aim 1: Develop algorithms for sample ascertainment and operationalization of key measures to enable the study of criminal justice contact and diversion programs among underserved populations with SMI. Aim 2: Validate and refine these algorithms through formal validation methods and in consultation with our partners. Aim 3: Test the feasibility of research using the linked dataset and algorithms by asking what types of service patterns precede incarceration of individuals with SMI and how these patterns differ across geographic and demographic subgroups, and by conducting a pilot evaluation of alternative crisis response interventions: who receives them, what their service patterns look like before and after the crisis service, how this differs between clients who receive a new mental health-only 911-dispatched service vs. a joint law enforcement-mental health crisis intervention team service, and how this compares to similar clients who had a police contact leading to arrest.
项目摘要/摘要 大规模监禁严重精神疾病患者(SMI)是一种公共卫生和人权危机。 自19世纪中叶以来,刑事司法系统从未在美国 社会对精神疾病做出反应。自20世纪60年代末以来,研究人员注意到监狱的数量不断增加 患有SMI的囚犯,经常被困在住院、无家可归和被捕的“旋转门”中。监禁 是与公共系统接触的最明显(也是最痛苦的)时刻之一,并提供了一个窗口 公共精神卫生系统的失败。我们的长期目标是告知并严格评估 寻求减少执法部门对精神疾病的反应并结束群众的政策和干预 监禁患有SMI的个人。根据NIMH战略目标4.1B和4.2,本R34提案 进一步开发真实世界的数据收集系统,以促进研究和持续监测 与获得机会、服务连续性、公平和结果有关,如在不同地区的监禁和无家可归 人口和环境。我们的研究方法是利用定期更新的洛杉矶县(LAC) 全县行政数据库,该数据库将8个公共机构的个人从2010年连接到 目前,关于监禁和SMI的研究。与拉丁美洲和加勒比地区管理人/提供者和非 Lac研究人员,我们将通过算法开发和验证来开发和测试这个数据库, 探索导致监禁的心理健康服务模式,并测试算法和 使用精神健康危机干预措施的试点评估代替执法反应的数据集,在 准备R01提案,以评估将资源从 向新的和现有的精神卫生服务提供刑事司法服务。Lac作为我们的研究场地,允许一个特别的- 因为它的规模(人口1000万)和跨越许多关键鸿沟的多样性,所以它看起来很有深度: 城市/农村、种族、经济、文化和资源可获得性。我们的具体目标如下:目标1: 开发用于样本确定和关键措施的可操作性的算法,以便能够研究 在服务不足的SMI人群中开展刑事司法联系和转移方案。目标2:验证和 通过正式的验证方法并与我们的合作伙伴协商,改进这些算法。目标3:测试 通过询问先于什么类型的服务模式来使用链接的数据集和算法进行研究的可行性 监禁患有SMI的个人以及这些模式在不同地理和人口统计中的差异 分组,并对替代危机应对干预措施进行试点评估:世卫组织收到 他们,他们的服务模式在危机服务前后是什么样子,这在客户之间有什么不同 接受新的精神健康服务-仅911-派遣服务与联合执法-精神健康危机 干预团队服务,以及与警方接触导致逮捕的类似客户的情况如何。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOEL T BRASLOW其他文献

JOEL T BRASLOW的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOEL T BRASLOW', 18)}}的其他基金

Serious mental illness and incarceration: piloting the use of a multi sector linked administrative dataset
严重精神疾病和监禁:试点使用多部门链接的管理数据集
  • 批准号:
    10355250
  • 财政年份:
    2022
  • 资助金额:
    $ 23.4万
  • 项目类别:
California MHS Act: Impact on Practice & Organizational Culture in Public Clinics
加州 MHS 法案:对实践的影响
  • 批准号:
    7585793
  • 财政年份:
    2007
  • 资助金额:
    $ 23.4万
  • 项目类别:
California MHS Act: Impact on Practice & Organizational Culture in Public Clinics
加州 MHS 法案:对实践的影响
  • 批准号:
    7287488
  • 财政年份:
    2007
  • 资助金额:
    $ 23.4万
  • 项目类别:
California MHS Act: Impact on Practice & Organizational Culture in Public Clinics
加州 MHS 法案:对实践的影响
  • 批准号:
    7798990
  • 财政年份:
    2007
  • 资助金额:
    $ 23.4万
  • 项目类别:
ANTIPSYCHOTIC DRUGS: SCIENCE, PRACTICE, AND CULTURE
抗精神病药物:科学、实践和文化
  • 批准号:
    6613770
  • 财政年份:
    2000
  • 资助金额:
    $ 23.4万
  • 项目类别:
ANTIPSYCHOTIC DRUGS: SCIENCE, PRACTICE, AND CULTURE
抗精神病药物:科学、实践和文化
  • 批准号:
    6199095
  • 财政年份:
    2000
  • 资助金额:
    $ 23.4万
  • 项目类别:
ANTIPSYCHOTIC DRUGS: SCIENCE, PRACTICE, AND CULTURE
抗精神病药物:科学、实践和文化
  • 批准号:
    6778229
  • 财政年份:
    2000
  • 资助金额:
    $ 23.4万
  • 项目类别:
ANTIPSYCHOTIC DRUGS: SCIENCE, PRACTICE, AND CULTURE
抗精神病药物:科学、实践和文化
  • 批准号:
    6528109
  • 财政年份:
    2000
  • 资助金额:
    $ 23.4万
  • 项目类别:
ANTIPSYCHOTIC DRUGS: SCIENCE, PRACTICE, AND CULTURE
抗精神病药物:科学、实践和文化
  • 批准号:
    6391605
  • 财政年份:
    2000
  • 资助金额:
    $ 23.4万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了