Improving Reproducibility of Respondent Driven Sampling through Adaptive Design
通过自适应设计提高受访者驱动抽样的可重复性
基本信息
- 批准号:10552018
- 负责人:
- 金额:$ 21.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAttentionBehaviorBehavioralCharacteristicsCommunitiesComputer softwareDataData CollectionEligibility DeterminationFaceFoundationsFundingGenerationsGoalsGuidelinesHIVImmigrantIncentivesIndividualInjecting drug userInternetInvestmentsKnowledgeLiteratureMarkov ChainsMeasuresMethodsMonitorOutcomeParticipantPatternPersonsPopulationProbability SamplesProcessReportingReproducibilityResearchResearch PersonnelRespondentRestRiskRunningSample SizeSamplingSampling StudiesSocial NetworkSpecific qualifier valueStigmatizationSubgroupTimeUnited States National Institutes of HealthWorkblindcostdashboarddesignethnic minorityexperienceimprovedinnovationmeetingsoperationopioid usepeerpopulation healthracial minorityreal time monitoringrecruitresponserural areascreeningstatisticssuburbsuccesstooltraining opportunitytraittransgender
项目摘要
Respondent driven sampling (RDS) is a recruitment method for hard-to-sample populations that are
rare in number and/or elusive due to highly-stigmatized or illicit behaviors. For these groups, traditional
probability sampling rarely offers feasibility, because it requires prohibitively high screening costs to locate
eligible persons, and, even when eligible persons are located, their desire to hide produces false negatives.
Based on the premise that people of similar traits form some type of social networks, RDS exploits the existing
networks for recruitment and has been applied to numerous studies. What sets RDS apart from traditional
sampling is that the recruitment process is mostly controlled by participants themselves through their chain-
referral that asks participants to recruit other eligible persons from their networks. The use of organic social
networks for sampling is an innovative feature of RDS. This, however, comes with one major challenge. In
order to capitalize on RDS, participants need to cooperate with recruitment requests. Because of
noncooperation, the sample may stop growing in size, resulting in a project overrun. However, the lack of
attention to this noncooperation process in the literature makes RDS data collection progress extremely difficult
to predict at the design stage, and when faces with undesirable (and often unexpected) challenges,
researchers are forced to make unplanned design changes (e.g., offering larger incentives) on the spur of the
moment in hopes of making RDS “work”. Additionally, noncooperation leads to a violation of a critical
assumption of RDS inferences. In sum, the current practice of RDS lacks operational and statistical
reproducibility, making its scientific integrity questionable.
This study attempts to improve reproducibility of RDS by proposing Adaptive-RDS (A-RDS) as a design
framework and to provide practical tools on which researchers rely for successful implementation of RDS and
by developing A-RDS specific design guidelines and software that will allow monitoring RDS data collection
progress and improve inferences that closely mirror the true data generation process. Under A-RDS, we will
plan design adaptation strategies, including indicators and rules for adaptations prior to the data collection.
During the field work, instead of assuming the same recruitment cooperation patterns across participants, we
will predict individual-level cooperation propensities from incoming data and tailor the number and type of
coupons for each participant received based on the pre-specified rules. For doing so, data collection progress
will be closely monitored and used for making adaptation decisions. In particular, this approach is empirically
applied to PWID studies to provide data for addressing rapidly escalated issues with opioid use.
By providing a practical yet data-driven, rule-based tool to the research community, the proposed study will
boost researchers' control on the operations of RDS, leading to not only improved reproducibility but also
increased chances of meeting critical assumptions in RDS required for valid inferences.
受访者驱动器采样(RDS)是用于难以样本人群的招聘方法
由于高度污名化或非法行为,数量很少和/或难以捉摸。对于这些群体,传统
概率采样很少提供可行性,因为它需要积极的筛选成本才能找到
合格的人,即使是合格的人,他们隐藏的渴望也会产生假否定性。
基于类似特征的人们形成某种类型的社交网络的前提,RD会利用现有的
招聘网络已应用于众多研究。是什么使RD与传统不同
抽样是,招聘过程主要由参与者自己控制。
推荐要求参与者从其网络中招募其他合格人员。有机社会的使用
抽样网络是RDS的创新功能。但是,这带来了一个主要挑战。在
为了大写RD,参与者需要与招聘请求合作。由于
非合作,样本可能会停止生长,从而导致项目超支。但是,缺乏
在文献中,注意这个非合作过程使RDS数据收集进步极为困难
在设计阶段进行预测,以及面对不良(通常是意外)挑战的面孔时,
研究人员被迫对计划外的设计更改(例如,提供更大的激励措施)
希望使RDS“工作”。此外,非合作导致侵犯关键
RDS推论的假设。总而言之,RDS的当前做法缺乏运营和统计
可重复性,使其科学完整性值得怀疑。
这项研究试图通过提出Adaptive-RD(A-RDS)作为设计来提高RD的可重复性
框架并提供实用工具,研究人员依靠成功实施RD和
通过制定A-RDS特定设计指南和软件,该指南将允许监视RDS数据收集
进步并改善推断,这些推论紧密反映了真实的数据生成过程。在A-RD下,我们将
计划设计适应策略,包括数据收集之前的适应指标和规则。
在现场工作中,我们没有假设参与者的相同招聘合作模式
将从传入的数据中预测个人级合作属性,并定制数量和类型
根据预先指定的规则收到的每个参与的优惠券。为此,数据收集进度
将密切监控并用于做出适应决策。特别是,这种方法在经验上是
应用于PWID研究,以提供用于解决阿片类药物使用快速升级问题的数据。
通过向研究社区提供实用但基于数据的基于规则的工具,拟议的研究将
促进研究人员对RD的运营的控制,不仅可以提高可重复性,还可以
增加有效推论所需的RD中关键假设的机会增加。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sung-Hee Lee其他文献
Sung-Hee Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sung-Hee Lee', 18)}}的其他基金
Network for Advancing Methodological Research in Longitudinal Studies of Aging
推进老龄化纵向研究方法论研究网络
- 批准号:
10435769 - 财政年份:2022
- 资助金额:
$ 21.9万 - 项目类别:
Network for Advancing Methodological Research in Longitudinal Studies of Aging
推进老龄化纵向研究方法论研究网络
- 批准号:
10627844 - 财政年份:2022
- 资助金额:
$ 21.9万 - 项目类别:
Exploring Design Aspects of Web-Based Respondent-Driven Sampling for Racial/Ethnic Minorities
探索针对少数种族/族裔的基于网络的受访者驱动抽样的设计方面
- 批准号:
9924497 - 财政年份:2019
- 资助金额:
$ 21.9万 - 项目类别:
Improving Reproducibility of Respondent Driven Sampling through Adaptive Design
通过自适应设计提高受访者驱动抽样的可重复性
- 批准号:
10761958 - 财政年份:2019
- 资助金额:
$ 21.9万 - 项目类别:
Improving Reproducibility of Respondent Driven Sampling through Adaptive Design - Diversity Supplement
通过自适应设计提高受访者驱动抽样的可重复性 - 多样性补充
- 批准号:
10631522 - 财政年份:2019
- 资助金额:
$ 21.9万 - 项目类别:
Improving Reproducibility of Respondent Driven Sampling through Adaptive Design
通过自适应设计提高受访者驱动抽样的可重复性
- 批准号:
10374744 - 财政年份:2019
- 资助金额:
$ 21.9万 - 项目类别:
相似国自然基金
自我护理模式下老年慢性病患数字化个人健康信息认知行为及其注意力和脑神经机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
儿童青少年注意力的行为与脑发育关键指标研究
- 批准号:62177035
- 批准年份:2021
- 资助金额:47 万元
- 项目类别:面上项目
自我护理模式下老年慢性病患数字化个人健康信息认知行为及其注意力和脑神经机制研究
- 批准号:72101161
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于时空内部注意力和动作聚合双流网络模型的新生儿全身运动评估
- 批准号:61906022
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
非工作上网行为对知识型员工工作绩效的影响机制及组织对策研究
- 批准号:71901201
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
- 批准号:
10827051 - 财政年份:2024
- 资助金额:
$ 21.9万 - 项目类别:
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 21.9万 - 项目类别:
Implementing SafeCare Kenya to Reduce Noncommunicable Disease Burden: Building Community Health Workers' Capacity to Support Parents with Young Children
实施 SafeCare Kenya 以减少非传染性疾病负担:建设社区卫生工作者支持有幼儿的父母的能力
- 批准号:
10672785 - 财政年份:2023
- 资助金额:
$ 21.9万 - 项目类别: