Systems Biology Modeling of Severe Community-Acquired Pneumonia
严重社区获得性肺炎的系统生物学模型
基本信息
- 批准号:10551466
- 负责人:
- 金额:$ 58.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-17 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVBiological MarkersBiological ModelsBlood specimenBronchoalveolar LavageCOVID-19 pneumoniaCOVID-19 treatmentCalciumCaringCellsClinicalClinical DataClinical TrialsCollaborationsControlled Clinical TrialsCurettage procedureDataData ScientistData SetDisease modelDisparateDistalElectronic Health RecordEnrollmentEpidemicFoundationsFrequenciesHospitalizationHospitalsImmune responseInfectionInfluenza A virusInterventionLungMachine LearningMechanical ventilationMiddle East Respiratory Syndrome CoronavirusModalityModelingMolecularMolecular ProfilingMultiomic DataNasopharynxNoseNosocomial pneumoniaOutcomePathogenesisPathway interactionsPatientsPhase II Clinical TrialsPhenotypePneumoniaPopulationPrediction of Response to TherapyProcessProteomicsPublic HealthPublishingResearch InfrastructureResearch PersonnelSARS coronavirusSARS-CoV-2 pathogenesisSamplingSecondary toSerumSpace ModelsSteroidsSystems BiologyT-LymphocyteTestingTherapeuticTranslatingUpdateVariantViralVirusZoonosescell typeclimate changeclinical predictorscommunity acquired pneumoniacytokineemerging pathogenepigenomicsexperimental studygenomic dataimprovedinhibitorinsightlung microbiomemicrobiome analysismortalitymouse modelmultiple omicsnovelnovel therapeuticspandemic diseasepandemic potentialpathogenpathogen genomicspharmacologicphase II trialpneumonia modelpneumonia treatmentpredictive modelingprospectiveprototyperespiratoryresponsesevere COVID-19single-cell RNA sequencingspecific biomarkerstargeted treatmenttocilizumabtooltreatment response
项目摘要
Project Summary/Abstract – Project 1
Pandemic community-acquired pneumonia (CAP) secondary to infection with the severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2) brought the public health importance of CAP into sharp focus.
Investigators in the Successful Clinical Response in Pneumonia Therapy (SCRIPT) systems biology center
developed a robust research infrastructure to prospectively collect 1,567 serial distal respiratory samples from
595 patients with severe CAP and hospital acquired pneumonia (HAP) requiring mechanical ventilation and
analyze these clinical samples using state-of-the art multi-omics approaches. We leveraged these data to
generate a systems model of SARS-CoV-2 pathogenesis and applied it toward a successful clinical trial of
Auxora, a calcium release activated channel inhibitor, that resulted in a 53% reduction in 30-day mortality in a
phase II trial. In Super-SCRIPT (SCRIPT2), we propose to leverage and expand the longitudinal clinical and
molecular data in SCRIPT. By applying machine learning to clinical data, we observe that patients with severe
pneumonia undergo transitions between distinct, clinically recognizable states over the course of their
hospitalization that are associated with more or less favorable outcomes. These transitions will serve as the
foundation for a model incorporating preliminary data generated from BAL and serum analysis that includes
single-cell RNA-sequencing of more than 500,000 bronchoalveolar lavage cells, cytokine levels, proteomic, T
cell epigenomic, and microbiome analyses. We will use these clinical and molecular data to test the hypothesis
that machine learning approaches applied to a latent space model of disease pathogenesis can identify
molecular predictors of favorable and unfavorable clinical transitions/outcomes during the clinical
course of CAP. A corollary hypothesis is that perturbations of these determinants during controlled clinical trials
of pharmacologic interventions will allow iteration of the models’ predictive capabilities. We will address these
hypotheses in three Specific Aims:
Aim 1. To identify clinical predictors of favorable and unfavorable clinical transitions/outcomes over
the course of CAP in patients requiring hospitalization.
Aim 2. To determine distinct host or pathogen genomic features that predict favorable or unfavorable
clinical transitions/outcomes in patients with severe CAP.
Aim 3. To identify pathways that can be targeted for therapy with existing or newly developed
therapeutics.
SCRIPT2 draws on successful collaborations between clinicians, biologists and data scientists to organize clinical
data, process distal lung samples and integrate disparate datasets into latent space models to develop large
scale models of pneumonia that can be rapidly translated into care pathways and novel therapies.
项目摘要/摘要-项目1
严重急性呼吸道感染继发的大流行性社区获得性肺炎
冠状病毒-2综合征(SARS-CoV-2)使CAP对公共卫生的重要性成为人们关注的焦点。
肺炎治疗的成功临床反应(SCRIPT)系统生物学中心的研究人员
开发了强大的研究基础设施,以前瞻性地从以下地点收集1,567个系列远端呼吸道样本
595例重症CAP和医院获得性肺炎(HAP)患者需要机械通气和
使用最先进的多组学方法分析这些临床样本。我们利用这些数据
建立SARS-CoV-2致病机制的系统模型,并将其应用于成功的临床试验
Auxora,一种钙释放激活的通道抑制剂,使患者30天的死亡率降低53%
第二阶段试验。在超级脚本(SCRIPT2)中,我们建议利用和扩展纵向临床和
脚本中的分子数据。通过将机器学习应用于临床数据,我们观察到重症患者
肺炎在其病程中经历不同的、临床可识别的状态之间的转换
与或多或少有利结果相关的住院治疗。这些过渡将作为
将BAL和血清分析产生的初步数据整合在一起的模型的基础,包括
500,000多个支气管肺泡灌洗细胞、细胞因子水平、蛋白质组、T细胞的单细胞RNA测序
细胞表观基因组学和微生物组分析。我们将使用这些临床和分子数据来检验这一假说
将机器学习方法应用于疾病发病机制的潜在空间模型可以识别
临床过程中有利和不利临床过渡/结果的分子预测因子
CAP的疗程。一个推论是,在受控临床试验期间,这些决定因素的扰动
药理学干预的结果将使模型的预测能力得以迭代。我们将解决这些问题
三个具体目标中的假设:
目的1.确定有利和不利的临床过渡/结果的临床预测因子
需要住院的患者的CAP病程。
目的2.确定预测有利或不利的不同寄主或病原体基因组特征
重度CAP患者的临床转归/转归。
目标3.确定可针对现有的或新开发的治疗的途径
治疗学。
SCRIPT2利用临床医生、生物学家和数据科学家之间的成功合作来组织临床
数据,处理远端肺样本,并将不同的数据集集成到潜在空间模型中,以开发大型
肺炎的规模模型,可以迅速转化为护理途径和新的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD G WUNDERINK其他文献
RICHARD G WUNDERINK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD G WUNDERINK', 18)}}的其他基金
Successful Clinical Response In Pneumonia Therapy (SCRIPT) Systems Biology Center
肺炎治疗 (SCRIPT) 系统生物学中心成功的临床反应
- 批准号:
10322470 - 财政年份:2021
- 资助金额:
$ 58.24万 - 项目类别:
Successful Clinical Response In Pneumonia Therapy (SCRIPT) Systems Biology Center
肺炎治疗 (SCRIPT) 系统生物学中心成功的临床反应
- 批准号:
10551461 - 财政年份:2018
- 资助金额:
$ 58.24万 - 项目类别:
Successful Clinical Response In Pneumonia Therapy (SCRIPT) Systems Biology Center
肺炎治疗 (SCRIPT) 系统生物学中心成功的临床反应
- 批准号:
10326809 - 财政年份:2018
- 资助金额:
$ 58.24万 - 项目类别:
Project 1: Dynamic Host Responses During Resolution of HAP
项目 1:解决 HAP 期间的动态主机响应
- 批准号:
10097983 - 财政年份:2018
- 资助金额:
$ 58.24万 - 项目类别:
Successful Clinical Response In Pneumonia Therapy (SCRIPT) Systems Biology Center
肺炎治疗 (SCRIPT) 系统生物学中心成功的临床反应
- 批准号:
10582471 - 财政年份:2018
- 资助金额:
$ 58.24万 - 项目类别:
相似海外基金
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10490338 - 财政年份:2021
- 资助金额:
$ 58.24万 - 项目类别:
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10353104 - 财政年份:2021
- 资助金额:
$ 58.24万 - 项目类别:
Investigating pollution dynamics of swimming pool waters by means of chemical and biological markers
利用化学和生物标记物研究游泳池水体的污染动态
- 批准号:
21K04320 - 财政年份:2021
- 资助金额:
$ 58.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10688286 - 财政年份:2021
- 资助金额:
$ 58.24万 - 项目类别:
Novel biological markers for immunotherapy and comprehensive genetic analysis in thymic carcinoma
用于胸腺癌免疫治疗和综合遗传分析的新型生物标志物
- 批准号:
20K17755 - 财政年份:2020
- 资助金额:
$ 58.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10578649 - 财政年份:2019
- 资助金额:
$ 58.24万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10295141 - 财政年份:2019
- 资助金额:
$ 58.24万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10041708 - 财政年份:2019
- 资助金额:
$ 58.24万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
9776149 - 财政年份:2019
- 资助金额:
$ 58.24万 - 项目类别:
Combining biological and non-biological markers to develop a model predictive of treatment response for individuals with depression
结合生物和非生物标志物来开发预测抑郁症患者治疗反应的模型
- 批准号:
2063934 - 财政年份:2018
- 资助金额:
$ 58.24万 - 项目类别:
Studentship