Translation Kinetics and their Effects on Protein Structure and Function, mRNA half-lives, and Cellular Phenotype
翻译动力学及其对蛋白质结构和功能、mRNA 半衰期和细胞表型的影响
基本信息
- 批准号:10552103
- 负责人:
- 金额:$ 58.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAmino AcidsBacteriaBig DataBindingBioinformaticsBiologicalCatalysisCellsChemotaxisCircadian RhythmsCodon NucleotidesCryoelectron MicroscopyDNADataData SetDiseaseDrosophila genusEnzymesGene ExpressionGenetic TranscriptionGrowthHumanKineticsLeadLinkMachine LearningMalignant NeoplasmsMass Spectrum AnalysisMessenger RNAMethodsMolecularMutationNUP214 geneOutcomePatternPhenotypePositioning AttributeProcessProteinsResearchResearch ProposalsRibosomesStatistical MethodsTechniquesTestingTimeTranslatingTranslationscell growthcomputerized toolsenzyme activityfollow-upfungusin silicoin vivo evaluationinsightmRNA Transcript Degradationmigrationmolecular modelingnovelpredictive modelingpromoterprotein functionprotein misfoldingprotein structurerate of changesimulationtheoriestooltranscription factor
项目摘要
Project Summary
Translation kinetics critically influences protein structure and function, the rate of mRNA degradation, and
cellular phenotype. When synonymous codon mutations are incorporated into an mRNA molecule (which
changes the rate at which codon positions are translated by the ribosome but not the amino acids they encode)
the specific activity of enzymes changes for long time periods, mRNA degradation rates are altered when these
mutations lead to ribosome traffic jams, and the ability of cells to migrate and maintain a circadian rhythm can
be affected. These effects occur across species, from bacteria to fruit flies, from fungi to humans. What is
missing in this field is a comprehensive, molecular understanding of how translation kinetics influences these
processes. Utilizing both computational (theory, simulation, and big data) and experimental (Mass Spec, Cryo-
EM, and NMR) methods, this proposal focuses on four fundamental questions: (i) Can the existence of a novel
form of protein misfolding, which is suggested to link synonymous mutations and altered protein function, be
experimentally demonstrated? (ii) Can gene expression be altered when such protein misfolding occurs in
transcription factors? (iii) Is it possible to understand and predict how elongation kinetics give rise to different
patterns of ribosome traffic, and how these patterns influence translation-dependent mRNA degradation? (iv)
What molecular mechanisms connect synonymous mutations in humans to changes in growth phenotype?
Preliminary data suggest clear hypotheses to these questions. For questions (i) and (ii), synonymous
mutations are hypothesized to alter the kinetic partitioning of nascent protein molecules into subpopulations of
misfolded, soluble, self-entangled states that have reduced functionality, which can affect catalysis in the case
of enzymes or DNA promotor binding in the case of transcription factors. For question (iii), application of
interpretable machine learning has suggested molecular factors that can alter both ribosome traffic and mRNA
degradation – which will form the basis for follow up in silico and in vivo testing. And for question (iv),
rigorous statistical methods the PI has used have identified synonymous cancer drivers which provide a unique
opportunity to understand and connect synonymous mutations to cellular phenotype. These hypotheses will be
tested using computational tools including multi-scale simulation techniques, bioinformatics, and machine
learning. And experimentally tested using mass spectrometry, Cryo-EM, NMR, and enzymatic chemotaxis.
This research will establish a unifying mechanism by which synonymous mutations can alter soluble
protein structure and function over long time periods. It will provide a novel molecular basis by which
synonymous mutations can affect gene expression at the transcriptional level. It will result in a predictive
model connecting non-linear effects between translation kinetics, ribosome traffic, and translation-dependent
mRNA degradation. And finally, it will establish the existence of synonymous cancer drivers affecting human
cell growth phenotype and the molecular mechanisms by which this occurs.
项目概要
翻译动力学对蛋白质结构和功能、mRNA 降解率以及
细胞表型。当同义密码子突变被整合到 mRNA 分子中时(
改变核糖体翻译密码子位置的速率,但不改变它们编码的氨基酸)
酶的比活性会长时间变化,当这些变化发生时,mRNA 降解率会发生变化
突变导致核糖体交通堵塞,细胞迁移和维持昼夜节律的能力可以
受到影响。这些影响发生在各个物种之间,从细菌到果蝇,从真菌到人类。什么是
该领域缺少对翻译动力学如何影响这些因素的全面的分子理解。
流程。利用计算(理论、模拟和大数据)和实验(质谱、冷冻)
EM 和 NMR)方法,该提案重点关注四个基本问题:(i)是否可以存在一种新颖的
蛋白质错误折叠的形式,被认为将同义突变和蛋白质功能改变联系起来
实验证明? (ii) 当这种蛋白质错误折叠发生在
转录因子? (iii) 是否有可能理解和预测伸长动力学如何产生不同的
核糖体运输模式,以及这些模式如何影响翻译依赖性 mRNA 降解? (四)
哪些分子机制将人类同义突变与生长表型的变化联系起来?
初步数据对这些问题提出了明确的假设。对于问题 (i) 和 (ii),同义
假设突变会改变新生蛋白质分子动态分配为亚群
错误折叠、可溶、自缠结状态的功能性降低,可能会影响催化作用
在转录因子的情况下,酶或 DNA 启动子的结合。对于问题(iii),应用
可解释的机器学习表明分子因素可以改变核糖体运输和 mRNA
降解——这将构成后续计算机模拟和体内测试的基础。对于问题(iv),
PI 使用的严格统计方法已经确定了同义的癌症驱动因素,这些驱动因素提供了独特的
有机会了解同义突变并将其与细胞表型联系起来。这些假设将
使用计算工具进行测试,包括多尺度模拟技术、生物信息学和机器
学习。并使用质谱、冷冻电镜、核磁共振和酶趋化性进行了实验测试。
这项研究将建立一个统一的机制,通过该机制同义突变可以改变可溶性
长期的蛋白质结构和功能。它将提供一个新的分子基础
同义突变可以影响转录水平的基因表达。它将产生一个预测结果
连接翻译动力学、核糖体运输和翻译依赖性之间的非线性效应的模型
mRNA 降解。最后,它将确定影响人类的同义癌症驱动因素的存在
细胞生长表型及其发生的分子机制。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identifying A- and P-site locations on ribosome-protected mRNA fragments using Integer Programming
- DOI:10.1038/s41598-019-42348-x
- 发表时间:2019-04-18
- 期刊:
- 影响因子:4.6
- 作者:Ahmed, Nabeel;Sormanni, Pietro;O'Brien, Edward P.
- 通讯作者:O'Brien, Edward P.
Pulse labeling reveals the tail end of protein folding by proteome profiling.
脉冲标记揭示了通过蛋白质组分析的蛋白质折叠的尾端。
- DOI:10.1016/j.celrep.2022.111096
- 发表时间:2022-07-19
- 期刊:
- 影响因子:8.8
- 作者:Zhu, Mang;Kuechler, Erich R.;Wong, Ryan W. K.;Calabrese, Gaetano;Sitarik, Ian M.;Rana, Viraj;Stoynov, Nikolay;O'Brien, Edward P.;Gsponer, Jorg;Mayor, Thibault
- 通讯作者:Mayor, Thibault
Mechanical Forces Have a Range of Effects on the Rate of Ribosome Catalyzed Peptidyl Transfer Depending on Direction.
- DOI:10.1021/acs.jpcb.1c02263
- 发表时间:2021-07-08
- 期刊:
- 影响因子:0
- 作者:Jiang Y;O'Brien EP
- 通讯作者:O'Brien EP
Incorporating mutational heterogeneity to identify genes that are enriched for synonymous mutations in cancer.
- DOI:10.1186/s12859-023-05521-8
- 发表时间:2023-12-07
- 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Structural Origins of FRET-Observed Nascent Chain Compaction on the Ribosome.
FRET 观察到的核糖体新生链压缩的结构起源。
- DOI:10.1021/acs.jpcb.8b07726
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Nissley,DanielA;O'Brien,EdwardP
- 通讯作者:O'Brien,EdwardP
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Patrick O'Brien其他文献
Edward Patrick O'Brien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Patrick O'Brien', 18)}}的其他基金
Modeling the influence of translation-elongation kinetics on protein structure and function
模拟翻译-延伸动力学对蛋白质结构和功能的影响
- 批准号:
10307359 - 财政年份:2017
- 资助金额:
$ 58.24万 - 项目类别:
Modeling the influence of translation-elongation kinetics on protein structure and function
模拟翻译-延伸动力学对蛋白质结构和功能的影响
- 批准号:
10457220 - 财政年份:2017
- 资助金额:
$ 58.24万 - 项目类别:
Modeling the influence of translation-elongation kinetics on protein structure and function
模拟翻译-延伸动力学对蛋白质结构和功能的影响
- 批准号:
10237895 - 财政年份:2017
- 资助金额:
$ 58.24万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 58.24万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 58.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 58.24万 - 项目类别:
Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 58.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 58.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 58.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 58.24万 - 项目类别:
Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 58.24万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 58.24万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 58.24万 - 项目类别:














{{item.name}}会员




