Regulation of protein synthesis during quiescence in bacteria
细菌静止期间蛋白质合成的调节
基本信息
- 批准号:10553221
- 负责人:
- 金额:$ 40.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-17 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAnabolismBacillus subtilisBacteriaCellsCoupledEnergy consumptionEnsureEnvironmentGenetic TranscriptionGoalsGrowthLifeMetabolicMetabolismNucleotidesNutrientPost-Transcriptional RegulationProcessProtein BiosynthesisRegulationResearch ProposalsResearch SubjectsResourcesResuscitationRibosomesRoleStarvationTranslationsattenuationcostimprovedmicrobial
项目摘要
Project Summary
Protein synthesis is subject to elaborate transcriptional and post-transcriptional regulation in growing
bacterial cells. Such mechanisms ensure that protein synthesis is efficiently coupled to the needs of a
rapidly dividing cell when nutrients are not limiting. However, most microbial life exists in a non-
proliferating state of quiescence that enables survival during nutrient limitation and in stressful
environments. Thus, the needs of quiescent cells are rather different from growing cells as they must
minimize energy consumption so as to maximize available resources over a potentially extended
period. Protein synthesis is the most energy intensive metabolic process in a cell, accounting for as
much as ~70% of total energy consumption in bacteria. Consistently, many bacteria such as Bacillus
subtilis are known to substantially reduce protein synthesis when they exit exponential growth.
However, quiescent cells need to effectively exploit the emergence of favorable conditions and
undergo resuscitation, so this attenuation needs to be rapidly reversible. In addition, as the ribosome
is itself the most energetically costly macromolecular machine to synthesize, it must be protected from
any degradative processes. And, as with translational attenuation, this protection must be compatible
with efficient re-initiation of protein synthesis when conditions improve. Thus, both the inhibitory and
protective mechanisms need to be quickly reversible. How the cell balances these two goals is the
subject of this research proposal. First, we examine how ribosomes are protected from degradation
under metabolic conditions where de novo ribosome biosynthesis is limited. Second, we investigate a
reversible mechanism of translation inactivation with particular focus on the role of the nucleotide
(p)ppGpp.
项目摘要
蛋白质合成在生长过程中受到复杂的转录和转录后调控
细菌细胞这样的机制确保蛋白质合成有效地与生物体的需要相结合。
当营养物质不受限制时,细胞迅速分裂。然而,大多数微生物存在于非-
在营养限制和压力下能够生存的静止增殖状态
环境.因此,静止细胞的需求与生长细胞的需求是相当不同的,因为它们必须
最大限度地减少能源消耗,以最大限度地利用现有资源,
期蛋白质合成是细胞中能量最密集的代谢过程,
约占细菌总能量消耗的70%。然而,许多细菌,如芽孢杆菌,
已知枯草杆菌在退出指数生长时显著减少蛋白质合成。
然而,静止细胞需要有效地利用有利条件的出现,
因此这种衰减需要迅速逆转。此外,作为核糖体,
它本身是合成能量最昂贵的高分子机器,必须保护它免受
任何降解过程。而且,与平移衰减一样,这种保护必须兼容
当条件改善时有效地重新启动蛋白质合成。因此,抑制和
保护机制需要快速可逆。细胞如何平衡这两个目标是
本研究课题。首先,我们研究核糖体是如何被保护不被降解的
在从头核糖体生物合成受到限制的代谢条件下。第二,我们调查一个
翻译失活的可逆机制,特别关注核苷酸的作用
(p)ppGpp。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONATHAN DWORKIN其他文献
JONATHAN DWORKIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JONATHAN DWORKIN', 18)}}的其他基金
Role of the alarmone (p)ppGpp in phenotypic antibiotic tolerance
警报酮 (p)ppGpp 在表型抗生素耐受性中的作用
- 批准号:
10406374 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
Regulation of protein synthesis during quiescence in bacteria
细菌静止期间蛋白质合成的调节
- 批准号:
10206408 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
Role of the alarmone (p)ppGpp in phenotypic antibiotic tolerance
警报酮 (p)ppGpp 在表型抗生素耐受性中的作用
- 批准号:
10302437 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
Regulation of protein synthesis during quiescence in bacteria
细菌静止期间蛋白质合成的调节
- 批准号:
10373068 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
Physiological responses to cell wall-active antibiotics in a Gram-positive bacterium
革兰氏阳性细菌对细胞壁活性抗生素的生理反应
- 批准号:
9434559 - 财政年份:2018
- 资助金额:
$ 40.26万 - 项目类别:
Regulation of Protein Synthesis in Bacteria by Ser/Thr Phosphorylation
Ser/Thr 磷酸化调节细菌蛋白质合成
- 批准号:
8862644 - 财政年份:2015
- 资助金额:
$ 40.26万 - 项目类别:
Regulation of Protein Synthesis in Bacteria by Ser/Thr Phosphorylation
Ser/Thr 磷酸化调节细菌蛋白质合成
- 批准号:
9264543 - 财政年份:2015
- 资助金额:
$ 40.26万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 40.26万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 40.26万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 40.26万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 40.26万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 40.26万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 40.26万 - 项目类别:
Discovery Early Career Researcher Award