Biomechanics of muscle after rotator cuff tear: Multi-scale assessment of spatial and temporal effects

肩袖撕裂后肌肉的生物力学:空间和时间影响的多尺度评估

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT A rotator cuff tendon tear affects up to 64% of adults, resulting in muscular changes that drive functional disability and poor clinical outcomes. Rotator cuff tears are associated with muscle atrophy and fatty infiltration (accrual of fat in the muscle bulk), non-homogenous distribution of fatty infiltration within the muscle, and reduced muscle strength and contractile function. Changes to muscle morphology likely have a negative effect on the muscle’s architecture (number and organization of muscle fibers) and the mechanical properties dictating the muscle’s overall force-generating capacity. However, little is known about the mechanisms linking muscle structure and function or how these associations change over time, exposing a notable knowledge gap. Establishing the structure-function associations of muscle after rotator cuff tear will expose the targets and key time points for design of treatments to improve outcomes for patients with a rotator cuff tear. Thus, the objective of this project is to determine the spatial and temporal changes to muscle morphology, architecture, and multi-scale mechanics after rotator cuff tear and surgical repair, and develop a predictive model to identify the mechanisms driving biomechanical function. To achieve this goal, longitudinal experimental assessments will be performed in an established rabbit model; a novel computational model will also be developed based on experimental structural measurements of muscle to further probe the mechanisms of muscle function. Specifically, this project aims to: 1) Establish the structure-function relationships of muscle after rotator cuff tear and surgical repair; and 2) Develop and test a predictive model to examine mechanisms driving reduced biomechanical function after rotator cuff tear. A rotator cuff tear will be surgically introduced in rabbits by blunt dissection of the supraspinatus tendon, with assessments at 2, 4, 6, and 8 weeks after injury; surgical repair will be performed 8 weeks after injury, with a final assessment 8 weeks after repair. At each time point, muscle morphology and architecture, and intra- versus extra-cellular location of lipid accumulation will be quantified using magnetic resonance imaging (MRI). Multi-scale mechanics will be assessed at whole muscle and single fiber levels. Structure-function associations and how these associations change over time will be established. Structural measures of muscle morphology, architecture, and mechanics will be used to develop and test a predictive model to probe the mechanistic role of each structural parameter on biomechanical function. Models will be used to determine the mechanism and timing that should be targeted by treatment to improve functional outcomes. This work is significant because it will establish the structure-function relationship of muscle after rotator cuff tear and surgical repair and identify the mechanisms underpinning biomechanical function. Little work has examined both spatial and temporal changes to muscle structure and examined their influence on function, making this work innovative. Study outcomes will expand our understanding of the impact of rotator cuff tear and drive development of novel treatments for the rotator cuff tear patient population.
PROJECT SUMMARY/ABSTRACT A rotator cuff tendon tear affects up to 64% of adults, resulting in muscular changes that drive functional disability and poor clinical outcomes. Rotator cuff tears are associated with muscle atrophy and fatty infiltration (accrual of fat in the muscle bulk), non-homogenous distribution of fatty infiltration within the muscle, and reduced muscle strength and contractile function. Changes to muscle morphology likely have a negative effect on the muscle’s architecture (number and organization of muscle fibers) and the mechanical properties dictating the muscle’s overall force-generating capacity. However, little is known about the mechanisms linking muscle structure and function or how these associations change over time, exposing a notable knowledge gap. Establishing the structure-function associations of muscle after rotator cuff tear will expose the targets and key time points for design of treatments to improve outcomes for patients with a rotator cuff tear. Thus, the objective of this project is to determine the spatial and temporal changes to muscle morphology, architecture, and multi-scale mechanics after rotator cuff tear and surgical repair, and develop a predictive model to identify the mechanisms driving biomechanical function. To achieve this goal, longitudinal experimental assessments will be performed in an established rabbit model; a novel computational model will also be developed based on experimental structural measurements of muscle to further probe the mechanisms of muscle function. Specifically, this project aims to: 1) Establish the structure-function relationships of muscle after rotator cuff tear and surgical repair; and 2) Develop and test a predictive model to examine mechanisms driving reduced biomechanical function after rotator cuff tear. A rotator cuff tear will be surgically introduced in rabbits by blunt dissection of the supraspinatus tendon, with assessments at 2, 4, 6, and 8 weeks after injury; surgical repair will be performed 8 weeks after injury, with a final assessment 8 weeks after repair. At each time point, muscle morphology and architecture, and intra- versus extra-cellular location of lipid accumulation will be quantified using magnetic resonance imaging (MRI). Multi-scale mechanics will be assessed at whole muscle and single fiber levels. Structure-function associations and how these associations change over time will be established. Structural measures of muscle morphology, architecture, and mechanics will be used to develop and test a predictive model to probe the mechanistic role of each structural parameter on biomechanical function. Models will be used to determine the mechanism and timing that should be targeted by treatment to improve functional outcomes. This work is significant because it will establish the structure-function relationship of muscle after rotator cuff tear and surgical repair and identify the mechanisms underpinning biomechanical function. Little work has examined both spatial and temporal changes to muscle structure and examined their influence on function, making this work innovative. Study outcomes will expand our understanding of the impact of rotator cuff tear and drive development of novel treatments for the rotator cuff tear patient population.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Meghan Elise Vidt其他文献

Meghan Elise Vidt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Meghan Elise Vidt', 18)}}的其他基金

Muscle function and compensation following rotator cuff tear in older adults
老年人肩袖撕裂后的肌肉功能和代偿
  • 批准号:
    8521025
  • 财政年份:
    2012
  • 资助金额:
    $ 46.46万
  • 项目类别:
Muscle function and compensation following rotator cuff tear in older adults
老年人肩袖撕裂后的肌肉功能和代偿
  • 批准号:
    8396473
  • 财政年份:
    2012
  • 资助金额:
    $ 46.46万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 46.46万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 46.46万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.46万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.46万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.46万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 46.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 46.46万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 46.46万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 46.46万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 46.46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了