Tissue Chip Models for Cardiovascular Development and Disease
心血管发育和疾病的组织芯片模型
基本信息
- 批准号:10556353
- 负责人:
- 金额:$ 42.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-20 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdultArrhythmiaBasic ScienceBiological ModelsBiomimeticsCalciumCardiacCardiac MyocytesCardiotoxicityCardiovascular DiseasesCardiovascular ModelsCardiovascular systemCell Culture SystemCellsCircadian RhythmsCirculationComplexDataDevelopmentDevicesDiastolic blood pressureDiseaseDisease modelDrug usageElectrophysiology (science)EmbryoEmbryonic HeartEngineeringEvaluationExerciseFDA approvedFunctional disorderGrowthHeartHeart DiseasesHeart RateHeart failureHip region structureHumanHuman bodyHyperplasiaHypertensionHypertrophyIschemiaLeftMetabolismModelingMyocardial tissueMyocardiumOrganPathologicPharmaceutical PreparationsPharmacologic SubstancePhenotypePhysiologic intraventricular pressurePhysiologicalProcessPublicationsPumpRecreationResearchRiskRoleStem Cell ResearchStimulusStressStretchingStructureSystemSystoleTestingTimeTissue EngineeringTissue MicroarrayTissue ModelTissue constructsTissuesTranslational ResearchValidationVentricularWithdrawalblood pumpcardiac tissue engineeringcardiogenesiscell typecircadian pacemakercongenital heart disorderdrug discoverydrug testingfunctional adaptationhemodynamicshuman modelhuman subjecthuman tissuein vivoindividual responseinduced pluripotent stem cell derived cardiomyocytesmicrophysiology systemmodel developmentpre-clinicalpressureresponsestressorsuccessthree dimensional cell culturetissue culture
项目摘要
PROJECT SUMMARY
Human Tissue Chips that accurately mimic organ-level structure and function are essential building blocks for
fully functional Human Microphysiological Systems (MPS) to recreate complex system-level interactions between
various organs and tissues. Human MPS have great potential to revolutionize basic and translational research
and provide platforms for drug testing and disease modeling with direct relevance to humans. Cardiac Tissue
Chips are of particular importance as they can not only be used to model cardiovascular disease but also
represent an essential component of any MPS platform used for drug discovery as drug induced cardiotoxicity
(arrhythmia risk) is a major reason for pharmaceutical withdrawal of FDA approved drugs. Development of
physiologically relevant models of the human myocardium is challenging due to the lack of appropriate human
cell types and culture systems. Recent breakthroughs in stem cell research have resulted in human induced
pluripotent stem cell derived cardiomyocytes (hiPS-CM) but these cells are immature in phenotype and differ
from human adult cardiomyocytes in terms of electrophysiological function, calcium handling, metabolism, and
contractile function. The heart is a dynamic organ responsible for maintaining systemic circulation and platforms
to culture engineered tissue need to recreate pressure-volume changes associated with physiological or
pathophysiological heart (pump) function. To address shortcomings with current Cardiac Tissue Chip platforms,
we developed a biomimetic cardiac tissue model (BCTM) that can subject engineered 3D cardiac tissue to
pressure-volume changes associated with the ventricular chamber. Using the BCTM, we generated new data
that demonstrates our ability to: (1) recreate pressure-volume changes associated with embryonic heart
development to accomplish early maturation of hiPS-CMs and (2) recreate pathological tissue remodeling
associated with pressure and volume overload. To establish the BCTM as a powerful Cardiac Tissue Chip Model
that can either be used independently as a model of cardiovascular development and disease, or integrated
within MPS for drug discovery and testing, we hypothesize: “Establishment of physiologically relevant
Human Cardiac Tissue Chip Models that can replicate in vivo –like structural remodeling and functional
adaptation as seen during heart development, normal function, and disease requires culture of
engineered cardiac tissue under pressure-volume changes associated with each of these conditions”.
To test this hypothesis, we propose three independent aims that focus on differentiation and maturation of hiPS-
CMs as a model of congenital heart disease, device-based approach to mitigate pathological cardiac tissue
remodeling and evaluate the cardiomyocyte circadian clock in development and disease. Successful completion
of this project will validate the BCTM as a relevant model of the human ventricle for cardiovascular disease
modeling and for potential integration with MPS platforms.
项目总结
精确模拟器官水平结构和功能的人体组织芯片是
全功能人类微生理系统(MPS)重建复杂的系统级相互作用
各种器官和组织。人类MPS具有使基础研究和翻译研究发生革命性变化的巨大潜力
并为药物测试和与人类直接相关的疾病建模提供平台。心脏组织
芯片特别重要,因为它们不仅可以用来模拟心血管疾病,而且还可以
代表任何用于药物发现的MPS平台的基本组件,如药物引起的心脏毒性
(心律失常风险)是FDA批准的药物撤药的主要原因。发展中的
由于缺乏合适的人,人体心肌的生理相关模型是具有挑战性的
细胞类型和培养系统。最近干细胞研究的突破导致人类诱导
多能干细胞来源的心肌细胞(HIPS-CM),但这些细胞表型不成熟,不同
人成年心肌细胞的电生理功能、钙处理、代谢和
收缩功能。心脏是一个充满活力的器官,负责维持全身循环和平台
为了培养工程化组织,需要重建与生理或
病理生理心脏(泵)功能。为了解决当前心脏组织芯片平台的缺点,
我们开发了一种仿生心脏组织模型(BCTM),它可以使工程化的3D心脏组织
与脑室相关的压力-容量变化。使用BCTM,我们生成了新数据
这表明我们有能力:(1)重建与胚胎心脏相关的压力-容量变化
实现HIPS-CMS早期成熟和(2)重建病理性组织重塑的开发
与压力和体积过载相关。建立功能强大的心脏组织芯片模型
它既可以单独用作心血管发育和疾病的模型,也可以集成
在用于药物发现和测试的MPS中,我们假设:“建立与生理相关的
可在体内复制类结构重塑和功能的人心脏组织芯片模型
在心脏发育、正常功能和疾病过程中看到的适应需要培养
压力下的工程化心脏组织--与上述每种情况相关的体积变化“。
为了验证这一假设,我们提出了三个独立的目标,专注于髋关节的分化和成熟-
CMS作为先天性心脏病的模型,基于设备的方法减轻病理性心脏组织
重构和评估发育和疾病中的心肌细胞生物钟。成功完成
该项目将验证BCTM作为人体心血管疾病的相关模型
建模和与MPS平台的潜在集成。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineered Aging Cardiac Tissue Chip Model for Studying Cardiovascular Disease.
- DOI:10.1159/000516954
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Budhathoki S;Graham C;Sethu P;Kannappan R
- 通讯作者:Kannappan R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Palaniappan Sethu其他文献
Palaniappan Sethu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Palaniappan Sethu', 18)}}的其他基金
Selection of Flow Modulation Protocols for Patients on Continuous Flow Ventricular Assist Devices (CF-VADs)
为使用连续流心室辅助装置 (CF-VAD) 的患者选择流量调节方案
- 批准号:
10116660 - 财政年份:2021
- 资助金额:
$ 42.52万 - 项目类别:
Selection of Flow Modulation Protocols for Patients on Continuous Flow Ventricular Assist Devices (CF-VADs)
为使用连续流心室辅助装置 (CF-VAD) 的患者选择流量调节方案
- 批准号:
10362551 - 财政年份:2021
- 资助金额:
$ 42.52万 - 项目类别:
Selection of Flow Modulation Protocols for Patients on Continuous Flow Ventricular Assist Devices (CF-VADs)
为使用连续流心室辅助装置 (CF-VAD) 的患者选择流量调节方案
- 批准号:
10576830 - 财政年份:2021
- 资助金额:
$ 42.52万 - 项目类别:
Tissue Chip Models for Cardiovascular Development and Disease
心血管发育和疾病的组织芯片模型
- 批准号:
10335220 - 财政年份:2020
- 资助金额:
$ 42.52万 - 项目类别:
Tissue Chip Models for Cardiovascular Development and Disease
心血管发育和疾病的组织芯片模型
- 批准号:
9907698 - 财政年份:2020
- 资助金额:
$ 42.52万 - 项目类别:
Functional Maturation of Induced Pluripotent Stem Cell Cardiomyocytes (IPS-CMs) via Targeted Mechanical Conditioning and Work
通过靶向机械调节和工作诱导多能干细胞心肌细胞 (IPS-CM) 的功能成熟
- 批准号:
8870836 - 财政年份:2015
- 资助金额:
$ 42.52万 - 项目类别:
Functional Maturation of Induced Pluripotent Stem Cell Cardiomyocytes (IPS-CMs) via Targeted Mechanical Conditioning and Work
通过靶向机械调节和工作诱导多能干细胞心肌细胞 (IPS-CM) 的功能成熟
- 批准号:
9045623 - 财政年份:2015
- 资助金额:
$ 42.52万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 42.52万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 42.52万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 42.52万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 42.52万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 42.52万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 42.52万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 42.52万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 42.52万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 42.52万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 42.52万 - 项目类别:
Research Grant