Apelin Signaling in Muscle Regeneration
肌肉再生中的 Apelin 信号转导
基本信息
- 批准号:10557030
- 负责人:
- 金额:$ 28.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-05 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:APLN geneAcuteAffectAgeAge YearsAgingAgonistAnimalsAnti-Inflammatory AgentsAtrophicAutoimmune DiseasesAutophagocytosisBiogenesisBiologicalBiological AssayBiological ModelsCell TherapyCellsCenters of Research ExcellenceChemicalsChronicClustered Regularly Interspaced Short Palindromic RepeatsCuesDataDiabetes MellitusDiseaseEndothelial CellsEtiologyFishesFutureGene ExpressionGenesGeneticGoalsHealthHomeostasisImageImmuneInfectionInflammationInflammatoryInjuryKnock-outLong-Term EffectsLongevityLongitudinal StudiesMacrophageMalignant NeoplasmsMetabolic DiseasesMitochondriaMolecularMusMuscleMuscle functionMuscle satellite cellMuscular AtrophyMyopathyNatural regenerationObesityPeptide Signal SequencesPeptidesPersonsPhenotypePopulationProliferatingReceptor ActivationReceptor GeneRecoveryRegenerative responseRejuvenationRoleSeriesSignal PathwaySignal TransductionSkeletal MuscleSwimmingSymptomsSystemTechnologyTestingTherapeuticTissuesTransgenic OrganismsZebrafishage effectage relatedage-related muscle lossagedangiogenesisanti agingcell behaviorcell growth regulationcell typeexperimental studyextracellulargain of functiongenetic approachgenome editinghealthy agingimprovedinjuredinsightintercellular communicationloss of functionmortality riskmuscle agingmuscle degenerationmuscle formmuscle regenerationmuscle strengthmutantnovelpharmacologicpleiotropismpreventreceptorregenerativeresponsesarcopeniasenescencesingle-cell RNA sequencingskeletal muscle wastingstem cell functionstem cell homeostasistherapeutic targettissue degenerationtranscriptomics
项目摘要
Abstract: Apelin Signaling Pathway In Muscle Regeneration And Rejuvenation
PI: Madelaine Romain
How extracellular signals and cell-to-cell communication dysregulation affect tissue homeostasis during aging
are still poorly understood. The age associated muscle disease, sarcopenia, affects more than 60% of people
over 80 years of age and results in mobility disorders and a significantly increased risk of mortality. Identifying
dysregulated biological mechanisms involved in the etiology of sarcopenia is critical to develop therapeutic
treatments to limit muscle atrophy. Recently, the expression of the apelin peptide has been shown to decline
with age, correlating with an increased inflammation, senescence, and degeneration of the muscle tissue.
Interestingly, treatments with the apelin peptide improve muscle regeneration and muscular function in aged
animals, indicating a role in muscle regeneration and rejuvenation. However, the molecular and cellular
mechanisms underlying apelin function are largely unknown, and the apelin dependent cellular crosstalk
between muscle stem cells (MuSC), endothelial cells, and immune cells contributing to enhanced muscle
regeneration are uncharacterized. Using the zebrafish as a model system, we will combine novel
pharmacological genetic approaches to perform state of the art apelin loss and gain of function studies and use
single cell RNA sequencing to identify downstream effectors of apelin that limit the impacts of aging. We
propose to test the function of apelin as an anti-aging and pro-regenerative signaling peptide and decipher cell
type specific functions of apelin during muscle aging and regeneration. This COBRE project includes two
specific aims. During the first aim, we will use a recently discovered chemical agonist of the apelin receptors
and newly generated Cre/Lox zebrafish transgenic lines to determine how chronic and genetically-induced
muscle-derived apelin affects the hallmarks of muscle aging (atrophy, senescence, inflammation…). Novel
CRISPR/Cas-9 zebrafish mutants will also us allow to test the function of the apelin receptor activation in
MuSC, endothelial cells and macrophages to decipher the cell type-specific apelin functions during muscle
aging and regeneration. Using state of the art single cell RNA-sequencing, aim 2 will reveal a set of genes
regulating MuSC transition into proliferation after injury. Taking advantage of the apelin receptors mutant fish,
this transcriptomic analysis should also lead to the identification of regenerative factors underlying apelin
functions in MuSC-dependent regenerative response. Successful completion of these aims will define the role
of the apelin signaling in multiple different cell types during muscle aging and reveal molecular and cellular
therapeutic targets to alleviate or reverse age-associated sarcopenia.
翻译后摘要:Apelin信号通路在肌肉再生和返老还童
PI:Madelaine Romain
细胞外信号和细胞间通讯失调如何影响衰老过程中的组织稳态
仍然知之甚少。与年龄相关的肌肉疾病,肌肉减少症,影响超过60%的人
80岁以上的老年人,导致行动障碍和死亡风险显著增加。识别
涉及肌肉减少症病因学的失调生物学机制对于开发治疗性药物是至关重要的。
限制肌肉萎缩的治疗方法。最近,已经显示爱帕琳肽的表达下降,
随着年龄的增长,与增加的炎症、衰老和肌肉组织的退化相关。
有趣的是,用爱帕琳肽治疗改善了老年人的肌肉再生和肌肉功能。
动物,表明在肌肉再生和恢复活力的作用。然而,分子和细胞
Apelin功能的潜在机制在很大程度上是未知的,并且Apelin依赖性细胞串扰(crosslinking)是细胞内信号转导的一个重要机制。
肌肉干细胞(MuSC),内皮细胞和免疫细胞之间有助于增强肌肉
再生是不确定的。利用斑马鱼作为模型系统,我们将联合收割机与新的
药理学遗传学方法来进行最新技术水平的爱帕琳蛋白功能丧失和获得的研究和应用
单细胞RNA测序以鉴定限制衰老影响的爱帕琳的下游效应物。我们
建议测试爱帕琳作为抗衰老和促再生信号肽的功能,
apelin在肌肉老化和再生过程中的类型特异性功能。COBRE项目包括两个
明确的目标。在第一个目标中,我们将使用最近发现的apelin受体的化学激动剂
和新产生的Cre/Lox斑马鱼转基因系,以确定慢性和遗传诱导
肌肉来源的爱帕琳影响肌肉老化的标志(萎缩、衰老、炎症.)。小说
CRISPR/Cas-9斑马鱼突变体也将允许我们测试apelin受体激活在斑马鱼中的功能。
MuSC、内皮细胞和巨噬细胞在肌肉生长过程中破译细胞类型特异性爱帕琳蛋白功能
老化和再生。使用最先进的单细胞RNA测序,目标2将揭示一组基因
调节损伤后MuSC向增殖的转变。利用apelin受体突变鱼,
这种转录组学分析也将导致对apelin基础的再生因子的鉴定
在MuSC依赖性再生反应中发挥作用。成功完成这些目标将确定
肌肉衰老期间多种不同细胞类型中爱帕琳信号传导的研究,揭示了分子和细胞
治疗靶点,以减轻或逆转年龄相关的肌肉减少症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Romain Madelaine其他文献
Romain Madelaine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 28.96万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 28.96万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 28.96万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 28.96万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 28.96万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 28.96万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 28.96万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 28.96万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 28.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 28.96万 - 项目类别:
Operating Grants