A Bioengineered Model of Tumor Vessel Interactions in Pancreatic Cancer
胰腺癌肿瘤血管相互作用的生物工程模型
基本信息
- 批准号:10557226
- 负责人:
- 金额:$ 21.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAblationAffectAnimalsBiologicalBiologyBiomedical EngineeringBiomimeticsBloodBlood CirculationBlood VesselsCadherinsCancer EtiologyCarcinomaCell LineCellsCellular StructuresCessation of lifeCirculationClinicalCoculture TechniquesCollaborationsDextransDiagnosisDiseaseDistantDistant MetastasisEndothelial CellsEndotheliumEngineeringEpitheliumExtravasationFunctional disorderGoalsHepatocyteHumanHybridsImmuneIn VitroIntravenousInvadedKnock-outLiverLungMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of pancreasMeasuresMediatingMediatorMedicineMesenchymalMetastatic Neoplasm to the LiverModelingMusNamesNatureNeoplasm Circulating CellsNeoplasm MetastasisNeoplasms in Vascular TissueOrganOutcomePancreatic Ductal AdenocarcinomaPatientsPericytesPermeabilityPhenotypePhysiologicalProcessPrognosisResearch PersonnelRoleSamplingSignal TransductionStainsStromal CellsStromal NeoplasmStructureSurvival RateSystemTestingTherapeuticTissuesTumor BurdenTumor Cell MigrationTumor EscapeTumor PromotionTumor stageVascular Endothelial CellVascularizationXenograft procedureclinically relevantclinically significantimprovedin vivoin vivo Modellymphatic vesselmigrationmouse modelneoplastic cellnovelpancreatic ductal adenocarcinoma cellpancreatic ductal adenocarcinoma modelpatient derived xenograft modelpreventstemnesstumortumor progressiontumor xenograft
项目摘要
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer deaths among malignancies. PDAC is
highly invasive and forms metastases in distant organs at the very early stage of tumor progression. To better
understand PDAC metastasis, tumor-blood vessel interactions need to be evaluated further, as tumor cells
spread primarily through the blood circulation. However, how PDAC interacts with blood vessels and establishes
distant metastases are poorly understood. Recently, our study using both three-dimensional (3D) biomimetic
PDAC-on-chip and multiple in vivo mouse models showed that PDAC cells invaded blood vasculatures and
actively replaced endothelial cells via ALK7 signaling, leading to a formation of tumor-vessel hybrid structure in
PDAC tumors. We refer to this phenomenon as tumor vessel replacement. Despite the novelty of the finding, it
is unknown what the biological consequences of the tumor vessel replacement in PDAC are. Understanding the
phenotypic consequences of the tumor vessel replacement is critical to determine the clinical relevance and
significance of blocking ALK7 in PDAC. We hypothesize that PDAC tumor vessel replacement increases tumor
vessel permeability; then promotes tumor intravasation and metastasis by facilitating tumor cells’ entering the
blood circulation through the leakier vessels. In order to test these hypotheses, we aim to determine—in both in
vitro and in vivo—(i) if tumor vessel replacement induces tumor vessel leakiness and promotes metastatic
dissemination and (ii) if ALK7 inhibition or ALK7 knock out (KO) ameliorates or reverses tumor vessel leakiness
and metastasis. In Aim 1, we will assess the role of ALK7 in PDAC vessel permeability in pericyte-covered blood
vessel on-chip by co-culturing microvascular endothelial cells and pericytes to mimic physiological blood vessels
surrounded by pericytes (Aim 1.1). Next, we will evaluate the role of ALK7 in PDAC vessel dysfunction in vivo.
We will generate an orthotopic PDAC model using wild-type or ALK7-KO PDAC cells, and examine PDAC tumor
vessel permeability by intravenously injecting dextran molecules (Aim 1.2). In Aim 2, we will examine ALK7 in
PDAC metastasis in vitro by establishing pre-metastatic liver microenvironment in the reservoirs that are
connected to the engineered blood vessel. Multiple PDAC lines will be assessed to test whether ALK7-mediated
tumor vessel replacement affects metastatic spreading (Aim 2.1). We will then evaluate the role of ALK7 in PDAC
metastasis in vivo using human patient-derived xenograft (PDX) models in collaboration with Dr. Manuel Hidalgo.
Metastatic tumor burdens in control vs. ALK7 KO groups will be assessed, and the number of circulating tumor
cells and overall survival rate will be determined (Aim 2.2). In summary, our 3D PDAC-on-chip system will provide
a unique platform to better investigate PDAC interactions with blood vessels and metastatic progression. We will
decipher the roles of ALK7 signaling in mediating tumor vessel dysregulation and metastasis; and assess
whether we will be able to reduce PDAC progression and metastasis by targeting ALK7.
胰腺导管腺癌(PDAC)是恶性肿瘤中癌症死亡的主要原因。 PDAC 是
具有高度侵袭性,并在肿瘤进展的早期阶段在远处器官中形成转移。为了更好
为了了解 PDAC 转移,需要进一步评估肿瘤与血管的相互作用,因为肿瘤细胞
主要通过血液循环传播。然而,PDAC 如何与血管相互作用并建立
对远处转移知之甚少。最近,我们的研究使用三维(3D)仿生技术
PDAC 芯片和多个体内小鼠模型表明 PDAC 细胞侵入血管并
通过 ALK7 信号传导主动替换内皮细胞,导致肿瘤-血管混合结构的形成
PDAC 肿瘤。我们将这种现象称为肿瘤血管替代。尽管这一发现很新颖,
PDAC 中肿瘤血管置换的生物学后果尚不清楚。了解
肿瘤血管置换的表型后果对于确定临床相关性和
阻断 PDAC 中 ALK7 的意义。我们假设 PDAC 肿瘤血管置换会增加肿瘤
血管渗透性;然后通过促进肿瘤细胞进入肿瘤细胞来促进肿瘤的浸润和转移。
血液循环通过渗漏的血管。为了检验这些假设,我们的目标是确定——在
体外和体内——(i) 如果肿瘤血管置换引起肿瘤血管渗漏并促进转移
(ii) ALK7 抑制或 ALK7 敲除 (KO) 是否改善或逆转肿瘤血管渗漏
和转移。在目标 1 中,我们将评估 ALK7 在周细胞覆盖的血液中 PDAC 血管通透性中的作用
通过共培养微血管内皮细胞和周细胞来模拟生理血管,从而实现芯片上血管
被周细胞包围(目标 1.1)。接下来,我们将评估 ALK7 在体内 PDAC 血管功能障碍中的作用。
我们将使用野生型或 ALK7-KO PDAC 细胞生成原位 PDAC 模型,并检查 PDAC 肿瘤
通过静脉注射葡聚糖分子来测量血管通透性(目标 1.2)。在目标 2 中,我们将检查 ALK7
通过在储库中建立转移前肝脏微环境来进行体外 PDAC 转移
连接到工程血管。将评估多个 PDAC 系以测试 ALK7 是否介导
肿瘤血管置换影响转移扩散(目标 2.1)。然后我们将评估 ALK7 在 PDAC 中的作用
与 Manuel Hidalgo 博士合作,使用人类患者来源的异种移植 (PDX) 模型进行体内转移。
将评估对照组与 ALK7 KO 组的转移性肿瘤负荷,以及循环肿瘤的数量
将确定细胞和总体存活率(目标 2.2)。总之,我们的 3D PDAC 片上系统将提供
一个独特的平台,可以更好地研究 PDAC 与血管和转移进展的相互作用。我们将
破译 ALK7 信号传导在介导肿瘤血管失调和转移中的作用;并评估
我们是否能够通过靶向 ALK7 来减少 PDAC 进展和转移。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Esak Lee其他文献
Esak Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Esak Lee', 18)}}的其他基金
Tissue-Engineered Models of Lymphatic Drainage in Breast Cancer
乳腺癌淋巴引流的组织工程模型
- 批准号:
10637169 - 财政年份:2023
- 资助金额:
$ 21.78万 - 项目类别:
A Bioengineered Model of Tumor Vessel Interactions in Pancreatic Cancer
胰腺癌肿瘤血管相互作用的生物工程模型
- 批准号:
10373531 - 财政年份:2022
- 资助金额:
$ 21.78万 - 项目类别:
Regulation of Lymphatic Endothelial Cell Junction and Drainage
淋巴内皮细胞连接和引流的调节
- 批准号:
10502991 - 财政年份:2022
- 资助金额:
$ 21.78万 - 项目类别:
Regulation of Lymphatic Endothelial Cell Junction and Drainage
淋巴内皮细胞连接和引流的调节
- 批准号:
10642883 - 财政年份:2022
- 资助金额:
$ 21.78万 - 项目类别:
A Bioengineered Model for Deciphering Lymphatic Dysfunction in Inflammation
破译炎症中淋巴功能障碍的生物工程模型
- 批准号:
10493273 - 财政年份:2021
- 资助金额:
$ 21.78万 - 项目类别:
A Bioengineered Model for Deciphering Lymphatic Dysfunction in Inflammation
破译炎症中淋巴功能障碍的生物工程模型
- 批准号:
10354568 - 财政年份:2021
- 资助金额:
$ 21.78万 - 项目类别:
相似海外基金
Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
- 批准号:
24K21101 - 财政年份:2024
- 资助金额:
$ 21.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
心房細動に対するPulsed Field Ablationの組織創傷治癒過程を明らかにする網羅的研究
阐明房颤脉冲场消融组织伤口愈合过程的综合研究
- 批准号:
24K11201 - 财政年份:2024
- 资助金额:
$ 21.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
遅延造影心臓MRIによる心房細動Ablation冷却効果の比較:28 vs. 31 mm Cryoballoon
使用延迟对比增强心脏 MRI 比较房颤消融冷却效果:28 毫米与 31 毫米 Cryoballoon
- 批准号:
24K11281 - 财政年份:2024
- 资助金额:
$ 21.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
InSPACE-VT_Development and Validation of Virtual Pace Mapping to Guide Catheter Ablation of Ventricular Tachycardia
InSPACE-VT_虚拟起搏测绘的开发和验证以指导室性心动过速导管消融
- 批准号:
EP/Z001145/1 - 财政年份:2024
- 资助金额:
$ 21.78万 - 项目类别:
Fellowship
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
- 批准号:
2338890 - 财政年份:2024
- 资助金额:
$ 21.78万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334777 - 财政年份:2024
- 资助金额:
$ 21.78万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334775 - 财政年份:2024
- 资助金额:
$ 21.78万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334776 - 财政年份:2024
- 资助金额:
$ 21.78万 - 项目类别:
Continuing Grant
Cryo laser-ablation system (157+193nm) with 'triple-quad' plasma mass spectrometer, Cryo-LA-ICPMS/MS
带有“三重四极杆”等离子体质谱仪、Cryo-LA-ICPMS/MS 的冷冻激光烧蚀系统 (157 193nm)
- 批准号:
515081333 - 财政年份:2023
- 资助金额:
$ 21.78万 - 项目类别:
Major Research Instrumentation
MRI: Acquisition of a Laser Ablation - Inductively Coupled Plasma - Triple Quadrupole - Mass Spectrometer (LA-ICP-QQQ-MS) System For Research and Education
MRI:获取用于研究和教育的激光烧蚀 - 电感耦合等离子体 - 三重四极杆 - 质谱仪 (LA-ICP-MS/MS) 系统
- 批准号:
2320040 - 财政年份:2023
- 资助金额:
$ 21.78万 - 项目类别:
Standard Grant