Bacterial DNA as a Diagnostic Biomarker of Hepatocellular Carcinoma
细菌 DNA 作为肝细胞癌的诊断生物标志物
基本信息
- 批准号:10557105
- 负责人:
- 金额:$ 18.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:Advanced DevelopmentAftercareAlgorithmsBacteriaBacterial DNABenignBiological MarkersBloodBlood specimenCancer BiologyCancer EtiologyCancerousCellsCessation of lifeChemoembolizationCirrhosisColonDNADataDetectionDevelopmentDiagnosisDiseaseFloridaFoundationsGenomeGoalsHBV Liver DiseaseHepatic MassIncidenceLiverLiver neoplasmsMachine LearningMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of liverMicrobeMissionMorbidity - disease rateOutcomePatientsPopulation ControlPrimary NeoplasmPrimary carcinoma of the liver cellsPrognosisProtocols documentationPublic HealthRectal CancerResearchResearch PersonnelRoleSamplingSolidSolid NeoplasmTestingThe Cancer Genome AtlasTherapeuticTissuesTumor BurdenUniversitiesVirusalpha-Fetoproteinsbiobankblood treatmentblood-based biomarkercancer biomarkerscancer genomicscancer typecohortdetection methoddiagnostic biomarkerearly detection biomarkersexperimental studyfungusgenome sequencinggenomic dataimprovedmachine learning algorithmmetastatic colorectalmicrobialmicrobial communitymortalitynon-alcoholic fatty liver diseasenovel strategiespatient screeningscreeningsurveillance imagingtooltranslational impacttranslational potentialtumortumor DNAwhole genome
项目摘要
PROJECT SUMMARY/ABSTRCT
Though hepatocellular carcinoma (HCC) is the 14th most common cancer in the US,1 it is the fifth most
common cause of cancer deaths with a 5-year survival of 19.6%. The incidence of HCC in the US is rising at the
annual rate of 4.5% per year, and it is the only cancer with an increase in mortality over the last ten years.
Currently, the only method for detection of HCC is with surveillance imaging in patients with cirrhosis and alpha
fetoprotein (AFP). However, approximately 13-20% of patients diagnosed with HCC do not have cirrhosis, and
hence were never screened for the disease. In addition, AFP is normal in approximately 30-40% of patients with
HCC. Because of this, HCC is usually detected at an advanced stage, when there are a limited number of
therapeutic options. This proposal is born out of convincing preliminary data that indicate that DNA from tumor-
dwelling microbes can identify malignancies. Approximately 2.5% of reads in The Cancer Genome Atlas (TCGA)
are microbial. Machine learning algorithms using these microbial reads accurately identified solid tumors from
each other and from adjacent control tissue. Moreover, much of this accuracy is maintained when blood samples
are used instead of the tumors. This preliminary data is particularly robust for HCC.
Based on this preliminary data, the proposed studies will advance the development of a biomarker for early
detection of HCC in several ways. First, we will use the machine learning algorithms developed from TCGA on
a new cohort of samples from the University of Florida liver biobank. This biobank has nearly as many HCC
samples as the entire TCGA network. Second, the proposed studies will use more rigorous controls than what
was available in the TCGA network. This includes the use of non-HCC liver malignancies and benign tumors.
Whereas the machine learning algorithms were adequate in distinguishing HCC masses from other primary
tumors in TCGA, it's not clear whether they can distinguish HCCs from other malignant and benign masses in
the liver (e.g., metastatic colorectal cancer, hepatomas), which are more common than HCC, or the blood from
patients with HCC to those from patients with cirrhosis without HCC. Finally, the proposed studies will help
determine whether the machine learning algorithms developed from TCGA can detect whether HCC has been
treated (e.g., chemoembolization) and thus potentially serve as a tool for surveillance. Overall, these experiments
will help determine how generalizable the algorithms developed with TCGA are to independent cohorts of HCC.
These studies will lay the foundation for the development of more effective screening and surveillance protocols
that will hopefully impact the significant morbidity and mortality associated with HCC. Finally, if these studies are
successful, they would encourage the exploration of using microbial DNA as an early detection biomarker for
other types of cancers, and the role of tumor-dwelling bacteria in cancer biology.
项目摘要/摘要
虽然肝细胞癌(HCC)是美国第14大最常见的癌症,但它是第五大最常见的癌症。
是癌症死亡的常见原因,5年生存率为19.6%。在美国,HCC的发病率正在上升,
年发病率为4.5%,是过去十年中死亡率上升的唯一癌症。
目前,检测HCC的唯一方法是在肝硬化和α-SMA患者中进行监视成像。
甲胎蛋白(AFP)。然而,大约13-20%的诊断为HCC的患者没有肝硬化,
因此从未接受过疾病筛查。此外,AFP在大约30-40%的患有急性白血病的患者中是正常的。
HCC。正因为如此,HCC通常在晚期被检测到,此时存在有限数量的
治疗选择这一提议源于令人信服的初步数据,这些数据表明来自肿瘤的DNA-
居住的微生物可以识别恶性肿瘤。癌症基因组图谱(TCGA)中约2.5%的读数
是微生物。使用这些微生物读数的机器学习算法准确地识别了实体瘤,
彼此和相邻对照组织。此外,当血液样本
而不是肿瘤。这一初步数据对于HCC尤其可靠。
基于这些初步数据,拟议的研究将推进早期生物标志物的开发
肝癌的检测有几种方法。首先,我们将使用从TCGA开发的机器学习算法,
来自佛罗里达大学肝脏生物库的一组新样本。这个生物样本库中的肝癌数量
作为整个TCGA网络的样本。第二,拟议的研究将使用更严格的控制,
在TCGA网络中可用。这包括使用非HCC肝脏恶性肿瘤和良性肿瘤。
然而,机器学习算法足以区分HCC肿块与其他原发性肿瘤。
尽管在TCGA中的肿瘤,但尚不清楚它们是否能区分HCC与其他恶性和良性肿块,
肝脏(例如,转移性结直肠癌,肝细胞瘤),比HCC更常见,或来自
肝癌患者与无肝癌的肝硬化患者。最后,拟议的研究将有所帮助
确定从TCGA开发的机器学习算法是否可以检测HCC是否已经被
处理过的(例如,化疗栓塞)并因此潜在地用作监视的工具。总的来说,这些实验
将有助于确定TCGA开发的算法对HCC独立队列的可推广性。
这些研究将为制定更有效的筛查和监测方案奠定基础
这将有望影响与HCC相关的显著发病率和死亡率。最后,如果这些研究
如果成功,他们将鼓励探索使用微生物DNA作为早期检测生物标志物,
其他类型的癌症,以及肿瘤驻留细菌在癌症生物学中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amir Zarrinpar其他文献
Amir Zarrinpar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amir Zarrinpar', 18)}}的其他基金
The Role of Bile Salt Hydrolase in Glucose Metabolism
胆盐水解酶在葡萄糖代谢中的作用
- 批准号:
10365160 - 财政年份:2022
- 资助金额:
$ 18.1万 - 项目类别:
The Role of Bile Salt Hydrolase in Glucose Metabolism
胆盐水解酶在葡萄糖代谢中的作用
- 批准号:
10617180 - 财政年份:2022
- 资助金额:
$ 18.1万 - 项目类别:
Bacterial DNA as a Diagnostic Biomarker of Hepatocellular Carcinoma
细菌 DNA 作为肝细胞癌的诊断生物标志物
- 批准号:
10357369 - 财政年份:2022
- 资助金额:
$ 18.1万 - 项目类别:
Engineering Native E. coli to Detect, Report, and Treat Colorectal Cancer
改造天然大肠杆菌来检测、报告和治疗结直肠癌
- 批准号:
10330342 - 财政年份:2021
- 资助金额:
$ 18.1万 - 项目类别:
Engineering Native E. coli to Detect, Report, and Treat Colorectal Cancer
改造天然大肠杆菌来检测、报告和治疗结直肠癌
- 批准号:
10700076 - 财政年份:2021
- 资助金额:
$ 18.1万 - 项目类别:
The Role of Altered Luminal Dynamics in OSA-Induced Atherosclerosis
管腔动力学改变在 OSA 诱发的动脉粥样硬化中的作用
- 批准号:
10273745 - 财政年份:2021
- 资助金额:
$ 18.1万 - 项目类别:
The Role of Altered Luminal Dynamics in OSA-Induced Atherosclerosis
管腔动力学改变在 OSA 诱发的动脉粥样硬化中的作用
- 批准号:
10455260 - 财政年份:2019
- 资助金额:
$ 18.1万 - 项目类别:
The Role of Altered Luminal Dynamics in OSA-Induced Atherosclerosis
管腔动力学改变在 OSA 诱发的动脉粥样硬化中的作用
- 批准号:
10217244 - 财政年份:2019
- 资助金额:
$ 18.1万 - 项目类别:
The Role of Altered Luminal Dynamics in OSA-Induced Atherosclerosis
管腔动力学改变在 OSA 诱发的动脉粥样硬化中的作用
- 批准号:
10884617 - 财政年份:2019
- 资助金额:
$ 18.1万 - 项目类别:
The Role of Altered Luminal Dynamics in OSA-Induced Atherosclerosis
管腔动力学改变在 OSA 诱发的动脉粥样硬化中的作用
- 批准号:
10456644 - 财政年份:2019
- 资助金额:
$ 18.1万 - 项目类别:
相似海外基金
Life outside institutions: histories of mental health aftercare 1900 - 1960
机构外的生活:1900 - 1960 年心理健康善后护理的历史
- 批准号:
DP240100640 - 财政年份:2024
- 资助金额:
$ 18.1万 - 项目类别:
Discovery Projects
Development of a program to promote psychological independence support in the aftercare of children's homes
制定一项计划,促进儿童之家善后护理中的心理独立支持
- 批准号:
23K01889 - 财政年份:2023
- 资助金额:
$ 18.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10452217 - 财政年份:2022
- 资助金额:
$ 18.1万 - 项目类别:
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10670838 - 财政年份:2022
- 资助金额:
$ 18.1万 - 项目类别:
Aftercare for young people: A sociological study of resource opportunities
年轻人的善后护理:资源机会的社会学研究
- 批准号:
DP200100492 - 财政年份:2020
- 资助金额:
$ 18.1万 - 项目类别:
Discovery Projects
Creating a National Aftercare Strategy for Survivors of Pediatric Cancer
为小儿癌症幸存者制定国家善后护理策略
- 批准号:
407264 - 财政年份:2019
- 资助金额:
$ 18.1万 - 项目类别:
Operating Grants
Aftercare of green infrastructure: creating algorithm for resolving human-bird conflicts
绿色基础设施的善后工作:创建解决人鸟冲突的算法
- 批准号:
18K18240 - 财政年份:2018
- 资助金额:
$ 18.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of an aftercare model for children who have experienced invasive procedures
为经历过侵入性手术的儿童开发善后护理模型
- 批准号:
17K12379 - 财政年份:2017
- 资助金额:
$ 18.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Comprehensive Aftercare Program for children's self-reliance support facility
为儿童自力更生支持设施制定综合善后护理计划
- 批准号:
17K13937 - 财政年份:2017
- 资助金额:
$ 18.1万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Project#2 Extending Treatment Effects Through an Adaptive Aftercare Intervention
项目
- 批准号:
8742767 - 财政年份:2014
- 资助金额:
$ 18.1万 - 项目类别: